Analysis Beispiele

Löse die Differntialgleichung. 2(dy)/(dx)-6xy-3x=0
Schritt 1
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 1.1.1.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.1.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Teile jeden Ausdruck in durch .
Schritt 1.1.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.2.2.1.2
Dividiere durch .
Schritt 1.1.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.3.1.1
Faktorisiere aus heraus.
Schritt 1.1.2.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.3.1.2.1
Faktorisiere aus heraus.
Schritt 1.1.2.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.1.2.3.1.2.3
Forme den Ausdruck um.
Schritt 1.1.2.3.1.2.4
Dividiere durch .
Schritt 1.2
Faktorisiere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Faktorisiere aus heraus.
Schritt 1.2.1.2
Faktorisiere aus heraus.
Schritt 1.2.1.3
Faktorisiere aus heraus.
Schritt 1.2.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.2.3
Kombiniere und .
Schritt 1.2.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.2.5
Bringe auf die linke Seite von .
Schritt 1.2.6
Kombiniere Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.6.1
Kombiniere und .
Schritt 1.2.6.2
Kombiniere und .
Schritt 1.2.7
Entferne unnötige Klammern.
Schritt 1.2.8
Bringe auf die linke Seite von .
Schritt 1.2.9
Mutltipliziere mit .
Schritt 1.3
Ordne die Faktoren neu an.
Schritt 1.4
Multipliziere beide Seiten mit .
Schritt 1.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Faktorisiere aus heraus.
Schritt 1.5.2
Kürze den gemeinsamen Faktor.
Schritt 1.5.3
Forme den Ausdruck um.
Schritt 1.6
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.1
Differenziere .
Schritt 2.2.1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.1.1.3.3
Mutltipliziere mit .
Schritt 2.2.1.1.4
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.1.1.4.2
Addiere und .
Schritt 2.2.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.2.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Mutltipliziere mit .
Schritt 2.2.2.2
Bringe auf die linke Seite von .
Schritt 2.2.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.4
Das Integral von nach ist .
Schritt 2.2.5
Vereinfache.
Schritt 2.2.6
Ersetze alle durch .
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.3
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.1
Schreibe als um.
Schritt 2.3.3.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.3.2.1
Mutltipliziere mit .
Schritt 2.3.3.2.2
Mutltipliziere mit .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.2
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.1
Kombiniere und .
Schritt 3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.2.2
Forme den Ausdruck um.
Schritt 3.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.1
Kombiniere und .
Schritt 3.2.2.1.2
Wende das Distributivgesetz an.
Schritt 3.2.2.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.3.1
Faktorisiere aus heraus.
Schritt 3.2.2.1.3.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.3.3
Forme den Ausdruck um.
Schritt 3.3
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 3.4
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3.5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Schreibe die Gleichung als um.
Schritt 3.5.2
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 3.5.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.5.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.4.1
Teile jeden Ausdruck in durch .
Schritt 3.5.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.5.4.2.1.2
Dividiere durch .
Schritt 3.5.4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.4.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.4.3.1.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.4.3.1.1.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.5.4.3.1.1.2
Kombiniere und .
Schritt 3.5.4.3.1.1.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.5.4.3.1.1.4
Mutltipliziere mit .
Schritt 3.5.4.3.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.5.4.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4
Vereinfache die Konstante der Integration.