Analysis Beispiele

Löse die Differntialgleichung. e^x(dy)/(dx)+3e^xy=2
Schritt 1
Schreibe die Differentialgleichung als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Teile jeden Ausdruck in durch .
Schritt 1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2
Dividiere durch .
Schritt 1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.2
Dividiere durch .
Schritt 2
Der Integrationsfaktor ist definiert durch die Formel , wobei gilt.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Stelle das Integral auf.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Entferne die Konstante der Integration.
Schritt 3
Multipliziere jeden Ausdruck mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere jeden Ausdruck mit .
Schritt 3.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.3
Kombiniere und .
Schritt 3.4
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Faktorisiere aus heraus.
Schritt 3.4.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.2.1
Multipliziere mit .
Schritt 3.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.4.2.3
Forme den Ausdruck um.
Schritt 3.4.2.4
Dividiere durch .
Schritt 3.5
Bringe auf die linke Seite von .
Schritt 3.6
Stelle die Faktoren in um.
Schritt 4
Schreibe die linke Seite als ein Ergebnis der Produktdifferenzierung.
Schritt 5
Integriere auf beiden Seiten.
Schritt 6
Integriere die linke Seite.
Schritt 7
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7.2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1.1
Differenziere .
Schritt 7.2.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 7.2.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 7.2.1.4
Mutltipliziere mit .
Schritt 7.2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 7.3
Kombiniere und .
Schritt 7.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.1
Kombiniere und .
Schritt 7.5.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.2.1
Kürze den gemeinsamen Faktor.
Schritt 7.5.2.2
Forme den Ausdruck um.
Schritt 7.5.3
Mutltipliziere mit .
Schritt 7.6
Das Integral von nach ist .
Schritt 7.7
Ersetze alle durch .
Schritt 8
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Teile jeden Ausdruck in durch .
Schritt 8.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.1.2
Dividiere durch .
Schritt 8.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1.1
Faktorisiere aus heraus.
Schritt 8.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1.2.1
Multipliziere mit .
Schritt 8.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 8.3.1.2.3
Forme den Ausdruck um.
Schritt 8.3.1.2.4
Dividiere durch .