Analysis Beispiele

Löse die Differntialgleichung. cos(x)^2sin(x)(dy)/(dx)+(cos(x)^3)y=1
Schritt 1
Schreibe die Differentialgleichung als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Stelle die Terme um.
Schritt 1.2
Faktorisiere aus heraus.
Schritt 1.3
Stelle und um.
Schritt 1.4
Teile jeden Ausdruck in durch .
Schritt 1.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.5.1
Kürze den gemeinsamen Faktor.
Schritt 1.5.2
Forme den Ausdruck um.
Schritt 1.6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.6.1
Kürze den gemeinsamen Faktor.
Schritt 1.6.2
Dividiere durch .
Schritt 1.7
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.1
Faktorisiere aus heraus.
Schritt 1.7.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.7.2.1
Faktorisiere aus heraus.
Schritt 1.7.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.7.2.3
Forme den Ausdruck um.
Schritt 1.8
Faktorisiere aus heraus.
Schritt 1.9
Stelle und um.
Schritt 2
Der Integrationsfaktor ist definiert durch die Formel , wobei gilt.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Stelle das Integral auf.
Schritt 2.2
Integriere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Wandle von nach um.
Schritt 2.2.2
Das Integral von nach ist .
Schritt 2.3
Entferne die Konstante der Integration.
Schritt 2.4
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 3
Multipliziere jeden Ausdruck mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere jeden Ausdruck mit .
Schritt 3.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Wandle von nach um.
Schritt 3.2.2
Schreibe mithilfe von Sinus und Kosinus um, kürze dann die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Stelle und um.
Schritt 3.2.2.2
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 3.2.2.3
Kürze die gemeinsamen Faktoren.
Schritt 3.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Faktorisiere aus heraus.
Schritt 3.3.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.3
Forme den Ausdruck um.
Schritt 3.4
Schreibe als um.
Schritt 3.5
Schreibe als um.
Schritt 3.6
Wandle von nach um.
Schritt 3.7
Stelle die Faktoren in um.
Schritt 4
Schreibe die linke Seite als ein Ergebnis der Produktdifferenzierung.
Schritt 5
Integriere auf beiden Seiten.
Schritt 6
Integriere die linke Seite.
Schritt 7
Da die Ableitung von gleich ist, ist das Integral von gleich .
Schritt 8
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Teile jeden Ausdruck in durch .
Schritt 8.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.1.2
Dividiere durch .
Schritt 8.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1.1
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 8.3.1.2
Schreibe als ein Produkt um.
Schritt 8.3.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 8.3.1.3.2
Forme den Ausdruck um.
Schritt 8.3.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.2.1
Wandle von nach um.
Schritt 8.3.2.2
Separiere Brüche.
Schritt 8.3.2.3
Wandle von nach um.
Schritt 8.3.2.4
Dividiere durch .