Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Schritt 2.2.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.2.3
Vereinfache die Lösung.
Schritt 2.2.3.1
Schreibe als um.
Schritt 2.2.3.2
Kombiniere und .
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.3
Vereinfache die Lösung.
Schritt 2.3.3.1
Schreibe als um.
Schritt 2.3.3.2
Vereinfache.
Schritt 2.3.3.2.1
Kombiniere und .
Schritt 2.3.3.2.2
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.3.2.2.1
Faktorisiere aus heraus.
Schritt 2.3.3.2.2.2
Kürze die gemeinsamen Faktoren.
Schritt 2.3.3.2.2.2.1
Faktorisiere aus heraus.
Schritt 2.3.3.2.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.3.2.2.2.3
Forme den Ausdruck um.
Schritt 2.3.3.2.2.2.4
Dividiere durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.2
Vereinfache beide Seiten der Gleichung.
Schritt 3.2.1
Vereinfache die linke Seite.
Schritt 3.2.1.1
Vereinfache .
Schritt 3.2.1.1.1
Kombiniere und .
Schritt 3.2.1.1.2
Kombinieren.
Schritt 3.2.1.1.3
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.3.2
Forme den Ausdruck um.
Schritt 3.2.1.1.4
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.4.2
Dividiere durch .
Schritt 3.2.2
Vereinfache die rechte Seite.
Schritt 3.2.2.1
Vereinfache .
Schritt 3.2.2.1.1
Wende das Distributivgesetz an.
Schritt 3.2.2.1.2
Multipliziere .
Schritt 3.2.2.1.2.1
Kombiniere und .
Schritt 3.2.2.1.2.2
Mutltipliziere mit .
Schritt 3.2.2.1.2.3
Kombiniere und .
Schritt 3.2.2.1.3
Kombiniere und .
Schritt 3.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.4
Vereinfache .
Schritt 3.4.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.4.2
Faktorisiere aus heraus.
Schritt 3.4.2.1
Faktorisiere aus heraus.
Schritt 3.4.2.2
Faktorisiere aus heraus.
Schritt 3.4.2.3
Faktorisiere aus heraus.
Schritt 3.4.3
Schreibe als um.
Schritt 3.4.4
Mutltipliziere mit .
Schritt 3.4.5
Vereinige und vereinfache den Nenner.
Schritt 3.4.5.1
Mutltipliziere mit .
Schritt 3.4.5.2
Potenziere mit .
Schritt 3.4.5.3
Potenziere mit .
Schritt 3.4.5.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.4.5.5
Addiere und .
Schritt 3.4.5.6
Schreibe als um.
Schritt 3.4.5.6.1
Benutze , um als neu zu schreiben.
Schritt 3.4.5.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.4.5.6.3
Kombiniere und .
Schritt 3.4.5.6.4
Kürze den gemeinsamen Faktor von .
Schritt 3.4.5.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.5.6.4.2
Forme den Ausdruck um.
Schritt 3.4.5.6.5
Berechne den Exponenten.
Schritt 3.4.6
Vereinfache den Zähler.
Schritt 3.4.6.1
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 3.4.6.2
Mutltipliziere mit .
Schritt 3.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.