Analysis Beispiele

Löse die Differntialgleichung. (dA)/(dr)=Ab^2cos(br) , A(0)=b^3
,
Schritt 1
Schreibe die Differentialgleichung als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe die Gleichung als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.1.2
Stelle die Terme um.
Schritt 1.2
Faktorisiere aus heraus.
Schritt 1.3
Stelle und um.
Schritt 2
Der Integrationsfaktor ist definiert durch die Formel , wobei gilt.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Stelle das Integral auf.
Schritt 2.2
Integriere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1.1
Forme um.
Schritt 2.2.2.1.2
Mutltipliziere mit .
Schritt 2.2.2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.2.3
Kombiniere und .
Schritt 2.2.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.5.1
Kombiniere und .
Schritt 2.2.5.2
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.5.2.1
Faktorisiere aus heraus.
Schritt 2.2.5.2.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.5.2.2.1
Potenziere mit .
Schritt 2.2.5.2.2.2
Faktorisiere aus heraus.
Schritt 2.2.5.2.2.3
Kürze den gemeinsamen Faktor.
Schritt 2.2.5.2.2.4
Forme den Ausdruck um.
Schritt 2.2.5.2.2.5
Dividiere durch .
Schritt 2.2.6
Das Integral von nach ist .
Schritt 2.2.7
Vereinfache.
Schritt 2.2.8
Ersetze alle durch .
Schritt 2.3
Entferne die Konstante der Integration.
Schritt 3
Multipliziere jeden Ausdruck mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere jeden Ausdruck mit .
Schritt 3.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.3
Mutltipliziere mit .
Schritt 3.4
Stelle die Faktoren in um.
Schritt 4
Schreibe die linke Seite als ein Ergebnis der Produktdifferenzierung.
Schritt 5
Integriere auf beiden Seiten.
Schritt 6
Integriere die linke Seite.
Schritt 7
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Das Integral von nach ist .
Schritt 7.2
Addiere und .
Schritt 8
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Teile jeden Ausdruck in durch .
Schritt 8.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.1.2
Dividiere durch .
Schritt 9
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 10
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Multipliziere beide Seiten mit .
Schritt 10.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1.1.1
Mutltipliziere mit .
Schritt 10.2.1.1.2
Der genau Wert von ist .
Schritt 10.2.1.1.3
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1.1.3.1
Mutltipliziere mit .
Schritt 10.2.1.1.3.2
Mutltipliziere mit .
Schritt 10.2.1.1.4
Alles, was mit potenziert wird, ist .
Schritt 10.2.1.1.5
Mutltipliziere mit .
Schritt 10.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 10.2.2.1.2
Forme den Ausdruck um.
Schritt 10.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 11
Setze für in ein und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Ersetze durch .