Analysis Beispiele

Löse die Differntialgleichung. (1+x)(yd)x+(1-y)xdy=0
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Multipliziere beide Seiten mit .
Schritt 3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Faktorisiere aus heraus.
Schritt 3.1.3
Kürze den gemeinsamen Faktor.
Schritt 3.1.4
Forme den Ausdruck um.
Schritt 3.2
Mutltipliziere mit .
Schritt 3.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.4.2
Faktorisiere aus heraus.
Schritt 3.4.3
Faktorisiere aus heraus.
Schritt 3.4.4
Kürze den gemeinsamen Faktor.
Schritt 3.4.5
Forme den Ausdruck um.
Schritt 3.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.6
Wende das Distributivgesetz an.
Schritt 3.7
Mutltipliziere mit .
Schritt 3.8
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.8.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.8.2
Kürze den gemeinsamen Faktor.
Schritt 3.8.3
Forme den Ausdruck um.
Schritt 4
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Integriere auf beiden Seiten.
Schritt 4.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Zerlege den Bruch in mehrere Brüche.
Schritt 4.2.2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 4.2.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 4.2.3.2
Dividiere durch .
Schritt 4.2.4
Das Integral von nach ist .
Schritt 4.2.5
Wende die Konstantenregel an.
Schritt 4.2.6
Vereinfache.
Schritt 4.2.7
Stelle die Terme um.
Schritt 4.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 4.3.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4.3.3
Das Integral von nach ist .
Schritt 4.3.4
Wende die Konstantenregel an.
Schritt 4.3.5
Vereinfache.
Schritt 4.3.6
Stelle die Terme um.
Schritt 4.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.