Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Schritt 2.1
Differenziere nach .
Schritt 2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3
Schritt 3.1
Differenziere nach .
Schritt 3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.3
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 3.4
Differenziere.
Schritt 3.4.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.4.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.4.3
Addiere und .
Schritt 3.4.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.4.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.6
Mutltipliziere mit .
Schritt 3.4.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.4.8
Vereinfache durch Addieren von Termen.
Schritt 3.4.8.1
Mutltipliziere mit .
Schritt 3.4.8.2
Addiere und .
Schritt 3.5
Vereinfache.
Schritt 3.5.1
Wende das Distributivgesetz an.
Schritt 3.5.2
Vereine die Terme
Schritt 3.5.2.1
Mutltipliziere mit .
Schritt 3.5.2.2
Mutltipliziere mit .
Schritt 3.5.3
Stelle die Terme um.
Schritt 4
Schritt 4.1
Setze für und für ein.
Schritt 4.2
Da die linke Seite nicht gleich der rechten Seite ist, ist die Gleichung nicht identisch.
ist keine Identitätsgleichung.
ist keine Identitätsgleichung.
Schritt 5
Schritt 5.1
Ersetze durch .
Schritt 5.2
Ersetze durch .
Schritt 5.3
Ersetze durch .
Schritt 5.3.1
Ersetze durch .
Schritt 5.3.2
Vereinfache den Zähler.
Schritt 5.3.2.1
Wende das Distributivgesetz an.
Schritt 5.3.2.2
Mutltipliziere mit .
Schritt 5.3.2.3
Mutltipliziere mit .
Schritt 5.3.2.4
Addiere und .
Schritt 5.3.2.5
Faktorisiere aus heraus.
Schritt 5.3.2.5.1
Faktorisiere aus heraus.
Schritt 5.3.2.5.2
Faktorisiere aus heraus.
Schritt 5.3.2.5.3
Faktorisiere aus heraus.
Schritt 5.3.3
Kürze den gemeinsamen Teiler von und .
Schritt 5.3.3.1
Stelle die Terme um.
Schritt 5.3.3.2
Kürze den gemeinsamen Faktor.
Schritt 5.3.3.3
Forme den Ausdruck um.
Schritt 5.3.4
Ziehe das Minuszeichen vor den Bruch.
Schritt 5.4
Bestimme den Integrationsfaktor .
Schritt 6
Schritt 6.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6.3
Mutltipliziere mit .
Schritt 6.4
Das Integral von nach ist .
Schritt 6.5
Vereinfache.
Schritt 6.6
Vereinfache jeden Term.
Schritt 6.6.1
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 6.6.2
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 6.6.3
Entferne den Absolutwert in , da Exponentation mit geradzahligen Potenzen immer in positiven Werten resultiert.
Schritt 6.6.4
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 7
Schritt 7.1
Mutltipliziere mit .
Schritt 7.2
Kombiniere und .
Schritt 7.3
Mutltipliziere mit .
Schritt 7.4
Kürze den gemeinsamen Faktor von .
Schritt 7.4.1
Faktorisiere aus heraus.
Schritt 7.4.2
Faktorisiere aus heraus.
Schritt 7.4.3
Kürze den gemeinsamen Faktor.
Schritt 7.4.4
Forme den Ausdruck um.
Schritt 7.5
Wende das Distributivgesetz an.
Schritt 7.6
Mutltipliziere mit .
Schritt 7.7
Schreibe als um.
Schritt 7.8
Mutltipliziere mit .
Schritt 7.9
Schreibe als um.
Schritt 7.10
Faktorisiere aus heraus.
Schritt 7.11
Faktorisiere aus heraus.
Schritt 7.12
Ziehe das Minuszeichen vor den Bruch.
Schritt 8
Setze gleich dem Integral von .
Schritt 9
Schritt 9.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 9.2
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 9.3
Multipliziere die Exponenten in .
Schritt 9.3.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 9.3.2
Mutltipliziere mit .
Schritt 9.4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 9.5
Vereinfache die Lösung.
Schritt 9.5.1
Schreibe als um.
Schritt 9.5.2
Kombiniere und .
Schritt 10
Da das Integral von eine Integrationskonstante enthalten wird, können wir durch ersetzen.
Schritt 11
Setze .
Schritt 12
Schritt 12.1
Differenziere nach .
Schritt 12.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 12.3
Berechne .
Schritt 12.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 12.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 12.3.3
Mutltipliziere mit .
Schritt 12.4
Differenziere unter Anwendung der Funktionsregel, die besagt, dass die Ableitung von ist.
Schritt 12.5
Stelle die Terme um.
Schritt 13
Schritt 13.1
Löse nach auf.
Schritt 13.1.1
Bringe alle Terme, die Variablen enthalten, auf die linke Seite der Gleichung.
Schritt 13.1.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 13.1.1.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 13.1.1.3
Addiere und .
Schritt 13.1.1.4
Addiere und .
Schritt 13.1.1.5
Kürze den gemeinsamen Faktor von .
Schritt 13.1.1.5.1
Kürze den gemeinsamen Faktor.
Schritt 13.1.1.5.2
Dividiere durch .
Schritt 13.1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 14
Schritt 14.1
Integriere beide Seiten von .
Schritt 14.2
Berechne .
Schritt 14.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 14.4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 14.5
Schreibe als um.
Schritt 15
Setze in ein.
Schritt 16
Kombiniere und .