Analysis Beispiele

Löse die Differntialgleichung. DE(dy)/(dx)=cos(y)^2
Schritt 1
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2
Forme den Ausdruck um.
Schritt 1.3
Entferne unnötige Klammern.
Schritt 1.4
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Wandle von nach um.
Schritt 2.2.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.3
Da die Ableitung von gleich ist, ist das Integral von gleich .
Schritt 2.2.4
Vereinfache.
Schritt 2.3
Wende die Konstantenregel an.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Teile jeden Ausdruck in durch .
Schritt 3.1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.1.2
Forme den Ausdruck um.
Schritt 3.1.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.1.2.2.2
Dividiere durch .
Schritt 3.2
Wende den inversen Tangens auf beide Seiten der Gleichung an, um aus dem Tangens herauszuziehen.
Schritt 4
Vereinfache die Konstante der Integration.