Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.2
Schreibe als um.
Schritt 1.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.5
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 1.6
Addiere und .
Schritt 1.7
Ersetze durch .
Schritt 2
Schreibe die linke Seite als ein Ergebnis der Produktdifferenzierung.
Schritt 3
Integriere auf beiden Seiten.
Schritt 4
Integriere die linke Seite.
Schritt 5
Schritt 5.1
Das Integral von nach ist .
Schritt 5.2
Addiere und .
Schritt 6
Schritt 6.1
Teile jeden Ausdruck in durch .
Schritt 6.2
Vereinfache die linke Seite.
Schritt 6.2.1
Kürze den gemeinsamen Faktor von .
Schritt 6.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.1.2
Dividiere durch .