Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Löse nach auf.
Schritt 1.1.1
Stelle die Faktoren in um.
Schritt 1.1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.1.3
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.1.3.1
Teile jeden Ausdruck in durch .
Schritt 1.1.3.2
Vereinfache die linke Seite.
Schritt 1.1.3.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 1.1.3.2.2
Kürze den gemeinsamen Faktor von .
Schritt 1.1.3.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.3.2.2.2
Forme den Ausdruck um.
Schritt 1.1.3.2.3
Kürze den gemeinsamen Faktor von .
Schritt 1.1.3.2.3.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.3.2.3.2
Dividiere durch .
Schritt 1.1.3.3
Vereinfache die rechte Seite.
Schritt 1.1.3.3.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 1.2
Multipliziere beide Seiten mit .
Schritt 1.3
Kürze den gemeinsamen Faktor von .
Schritt 1.3.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.2
Forme den Ausdruck um.
Schritt 1.4
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Schritt 2.2.1
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 2.2.2
Das Integral von nach ist .
Schritt 2.2.3
Vereinfache.
Schritt 2.2.4
Stelle die Terme um.
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 2.3.1.1
Es sei . Ermittle .
Schritt 2.3.1.1.1
Differenziere .
Schritt 2.3.1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.1.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.1.1.5
Addiere und .
Schritt 2.3.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.2
Kombiniere und .
Schritt 2.3.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.4
Benutze , um als neu zu schreiben.
Schritt 2.3.5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.6
Vereinfache.
Schritt 2.3.6.1
Schreibe als um.
Schritt 2.3.6.2
Vereinfache.
Schritt 2.3.6.2.1
Mutltipliziere mit .
Schritt 2.3.6.2.2
Mutltipliziere mit .
Schritt 2.3.6.2.3
Kürze den gemeinsamen Teiler von und .
Schritt 2.3.6.2.3.1
Faktorisiere aus heraus.
Schritt 2.3.6.2.3.2
Kürze die gemeinsamen Faktoren.
Schritt 2.3.6.2.3.2.1
Faktorisiere aus heraus.
Schritt 2.3.6.2.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.6.2.3.2.3
Forme den Ausdruck um.
Schritt 2.3.7
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.