Analysis Beispiele

Löse die Differntialgleichung. (e^x+1)dx+(y^2-1)/(y^2)dy=0
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 2.2.1.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.2.1.2.2
Mutltipliziere mit .
Schritt 2.2.2
Multipliziere .
Schritt 2.2.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.3.1.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 2.2.3.1.2
Subtrahiere von .
Schritt 2.2.3.2
Vereinfache .
Schritt 2.2.3.3
Schreibe als um.
Schritt 2.2.4
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.2.5
Wende die Konstantenregel an.
Schritt 2.2.6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.2.8
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.8.1
Vereinfache.
Schritt 2.2.8.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.8.2.1
Mutltipliziere mit .
Schritt 2.2.8.2.2
Mutltipliziere mit .
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.3
Das Integral von nach ist .
Schritt 2.3.4
Wende die Konstantenregel an.
Schritt 2.3.5
Vereinfache.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.