Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 2.3.2.1
Es sei . Ermittle .
Schritt 2.3.2.1.1
Differenziere .
Schritt 2.3.2.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.2.1.4
Mutltipliziere mit .
Schritt 2.3.2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.3
Kombiniere und .
Schritt 2.3.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.5
Vereinfache.
Schritt 2.3.5.1
Kombiniere und .
Schritt 2.3.5.2
Kürze den gemeinsamen Faktor von .
Schritt 2.3.5.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.5.2.2
Forme den Ausdruck um.
Schritt 2.3.5.3
Mutltipliziere mit .
Schritt 2.3.6
Das Integral von nach ist .
Schritt 2.3.7
Vereinfache.
Schritt 2.3.8
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 4
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Vereinfache die linke Seite.
Schritt 4.2.1
Vereinfache .
Schritt 4.2.1.1
Vereinfache jeden Term.
Schritt 4.2.1.1.1
Mutltipliziere mit .
Schritt 4.2.1.1.2
Der genau Wert von ist .
Schritt 4.2.1.1.3
Mutltipliziere mit .
Schritt 4.2.1.2
Addiere und .
Schritt 5
Schritt 5.1
Ersetze durch .