Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Kürze den gemeinsamen Faktor von .
Schritt 1.2.1
Faktorisiere aus heraus.
Schritt 1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3
Forme den Ausdruck um.
Schritt 1.3
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.3
Das Integral von nach ist .
Schritt 2.3.4
Das Integral von nach ist .
Schritt 2.3.5
Vereinfache.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.2
Vereinfache beide Seiten der Gleichung.
Schritt 3.2.1
Vereinfache die linke Seite.
Schritt 3.2.1.1
Vereinfache .
Schritt 3.2.1.1.1
Kombiniere und .
Schritt 3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.2.2
Forme den Ausdruck um.
Schritt 3.2.2
Vereinfache die rechte Seite.
Schritt 3.2.2.1
Vereinfache .
Schritt 3.2.2.1.1
Vereinfache jeden Term.
Schritt 3.2.2.1.1.1
Wende das Distributivgesetz an.
Schritt 3.2.2.1.1.2
Kombiniere und .
Schritt 3.2.2.1.1.3
Kombiniere und .
Schritt 3.2.2.1.2
Wende das Distributivgesetz an.
Schritt 3.2.2.1.3
Vereinfache.
Schritt 3.2.2.1.3.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.1.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.3.1.2
Forme den Ausdruck um.
Schritt 3.2.2.1.3.2
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.1.3.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.2.1.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.3.2.3
Forme den Ausdruck um.
Schritt 3.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.4
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3.4.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.4.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Vereinfache die Konstante der Integration.