Analysis Beispiele

Löse die Differntialgleichung. dx+(x/y-sin(y))dy=0
Schritt 1
Ermittle , wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere nach .
Schritt 1.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2
Ermittle , wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere nach .
Schritt 2.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.4
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.4.2
Addiere und .
Schritt 3
Prüfe, ob .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze für und für ein.
Schritt 3.2
Da die linke Seite nicht gleich der rechten Seite ist, ist die Gleichung nicht identisch.
ist keine Identitätsgleichung.
ist keine Identitätsgleichung.
Schritt 4
Bestimme den Integrationsfaktor .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze durch .
Schritt 4.2
Ersetze durch .
Schritt 4.3
Ersetze durch .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Ersetze durch .
Schritt 4.3.2
Dividiere durch .
Schritt 4.3.3
Ersetze durch .
Schritt 4.4
Bestimme den Integrationsfaktor .
Schritt 5
Berechne das Integral .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Das Integral von nach ist .
Schritt 5.2
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache.
Schritt 5.2.2
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 6
Mutltipliziere mit .
Schritt 7
Setze gleich dem Integral von .
Schritt 8
Integriere , um zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Wende die Konstantenregel an.
Schritt 9
Da das Integral von eine Integrationskonstante enthalten wird, können wir durch ersetzen.
Schritt 10
Setze .
Schritt 11
Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Differenziere nach .
Schritt 11.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 11.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 11.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 11.3.3
Mutltipliziere mit .
Schritt 11.4
Differenziere unter Anwendung der Funktionsregel, die besagt, dass die Ableitung von ist.
Schritt 11.5
Stelle die Terme um.
Schritt 12
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 12.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.2.1
Subtrahiere von .
Schritt 12.1.2.2
Addiere und .
Schritt 13
Bestimme die Stammfunktion von , um zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Integriere beide Seiten von .
Schritt 13.2
Berechne .
Schritt 13.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 13.4
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 13.5
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 13.6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.6.1
Mutltipliziere mit .
Schritt 13.6.2
Mutltipliziere mit .
Schritt 13.7
Das Integral von nach ist .
Schritt 13.8
Schreibe als um.
Schritt 14
Setze in ein.
Schritt 15
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.1
Wende das Distributivgesetz an.
Schritt 15.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 15.2.1
Mutltipliziere mit .
Schritt 15.2.2
Mutltipliziere mit .