Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Löse nach auf.
Schritt 1.1.1
Vereinfache jeden Term.
Schritt 1.1.1.1
Wende das Distributivgesetz an.
Schritt 1.1.1.2
Mutltipliziere mit .
Schritt 1.1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.1.3
Faktorisiere aus heraus.
Schritt 1.1.3.1
Faktorisiere aus heraus.
Schritt 1.1.3.2
Potenziere mit .
Schritt 1.1.3.3
Faktorisiere aus heraus.
Schritt 1.1.3.4
Faktorisiere aus heraus.
Schritt 1.1.4
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.1.4.1
Teile jeden Ausdruck in durch .
Schritt 1.1.4.2
Vereinfache die linke Seite.
Schritt 1.1.4.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.1.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.4.2.1.2
Dividiere durch .
Schritt 1.1.4.3
Vereinfache die rechte Seite.
Schritt 1.1.4.3.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.1.4.3.2
Faktorisiere aus heraus.
Schritt 1.1.4.3.2.1
Potenziere mit .
Schritt 1.1.4.3.2.2
Faktorisiere aus heraus.
Schritt 1.1.4.3.2.3
Faktorisiere aus heraus.
Schritt 1.1.4.3.2.4
Faktorisiere aus heraus.
Schritt 1.2
Ordne die Faktoren neu an.
Schritt 1.3
Multipliziere beide Seiten mit .
Schritt 1.4
Kürze den gemeinsamen Faktor von .
Schritt 1.4.1
Faktorisiere aus heraus.
Schritt 1.4.2
Kürze den gemeinsamen Faktor.
Schritt 1.4.3
Forme den Ausdruck um.
Schritt 1.5
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Schritt 2.2.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 2.2.1.1
Es sei . Ermittle .
Schritt 2.2.1.1.1
Differenziere .
Schritt 2.2.1.1.2
Differenziere.
Schritt 2.2.1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.1.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.1.1.3
Berechne .
Schritt 2.2.1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.1.1.3.3
Mutltipliziere mit .
Schritt 2.2.1.1.4
Subtrahiere von .
Schritt 2.2.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.2.2
Vereinfache.
Schritt 2.2.2.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.2.2
Mutltipliziere mit .
Schritt 2.2.2.3
Bringe auf die linke Seite von .
Schritt 2.2.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.5
Das Integral von nach ist .
Schritt 2.2.6
Vereinfache.
Schritt 2.2.7
Ersetze alle durch .
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 2.3.1.1
Es sei . Ermittle .
Schritt 2.3.1.1.1
Differenziere .
Schritt 2.3.1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.1.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.1.1.5
Addiere und .
Schritt 2.3.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.2
Vereinfache.
Schritt 2.3.2.1
Mutltipliziere mit .
Schritt 2.3.2.2
Bringe auf die linke Seite von .
Schritt 2.3.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.4
Das Integral von nach ist .
Schritt 2.3.5
Vereinfache.
Schritt 2.3.6
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.2
Vereinfache beide Seiten der Gleichung.
Schritt 3.2.1
Vereinfache die linke Seite.
Schritt 3.2.1.1
Vereinfache .
Schritt 3.2.1.1.1
Kombiniere und .
Schritt 3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.1.1.2.2
Faktorisiere aus heraus.
Schritt 3.2.1.1.2.3
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.2.4
Forme den Ausdruck um.
Schritt 3.2.1.1.3
Multipliziere.
Schritt 3.2.1.1.3.1
Mutltipliziere mit .
Schritt 3.2.1.1.3.2
Mutltipliziere mit .
Schritt 3.2.2
Vereinfache die rechte Seite.
Schritt 3.2.2.1
Vereinfache .
Schritt 3.2.2.1.1
Kombiniere und .
Schritt 3.2.2.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.2.2.1.3
Vereinfache Terme.
Schritt 3.2.2.1.3.1
Kombiniere und .
Schritt 3.2.2.1.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.2.2.1.3.3
Kürze den gemeinsamen Faktor von .
Schritt 3.2.2.1.3.3.1
Faktorisiere aus heraus.
Schritt 3.2.2.1.3.3.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.3.3.3
Forme den Ausdruck um.
Schritt 3.2.2.1.4
Bringe auf die linke Seite von .
Schritt 3.2.2.1.5
Vereinfache durch Ausmultiplizieren.
Schritt 3.2.2.1.5.1
Wende das Distributivgesetz an.
Schritt 3.2.2.1.5.2
Mutltipliziere mit .
Schritt 3.3
Bringe alle Terme, die einen Logarithmus enthalten, auf die linke Seite der Gleichung.
Schritt 3.4
Vereinfache die linke Seite.
Schritt 3.4.1
Vereinfache .
Schritt 3.4.1.1
Vereinfache jeden Term.
Schritt 3.4.1.1.1
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 3.4.1.1.2
Entferne den Absolutwert in , da Exponentation mit geradzahligen Potenzen immer in positiven Werten resultiert.
Schritt 3.4.1.2
Wende die Produktregel für Logarithmen an, .
Schritt 3.5
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 3.6
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3.7
Löse nach auf.
Schritt 3.7.1
Schreibe die Gleichung als um.
Schritt 3.7.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.7.2.1
Teile jeden Ausdruck in durch .
Schritt 3.7.2.2
Vereinfache die linke Seite.
Schritt 3.7.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.7.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.7.2.2.1.2
Dividiere durch .
Schritt 3.7.3
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 3.7.4
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.7.5
Teile jeden Ausdruck in durch und vereinfache.
Schritt 3.7.5.1
Teile jeden Ausdruck in durch .
Schritt 3.7.5.2
Vereinfache die linke Seite.
Schritt 3.7.5.2.1
Kürze den gemeinsamen Faktor von .
Schritt 3.7.5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.7.5.2.1.2
Dividiere durch .
Schritt 3.7.5.3
Vereinfache die rechte Seite.
Schritt 3.7.5.3.1
Vereinfache jeden Term.
Schritt 3.7.5.3.1.1
Vereinfache .
Schritt 3.7.5.3.1.2
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3.7.5.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4
Schritt 4.1
Vereinfache die Konstante der Integration.
Schritt 4.2
Kombiniere Konstanten mit Plus oder Minus.