Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere nach .
Schritt 1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.5
Addiere und .
Schritt 2
Schritt 2.1
Differenziere nach .
Schritt 2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4
Mutltipliziere mit .
Schritt 3
Schritt 3.1
Setze für und für ein.
Schritt 3.2
Da die linke Seite nicht gleich der rechten Seite ist, ist die Gleichung nicht identisch.
ist keine Identitätsgleichung.
ist keine Identitätsgleichung.
Schritt 4
Schritt 4.1
Ersetze durch .
Schritt 4.2
Ersetze durch .
Schritt 4.3
Ersetze durch .
Schritt 4.3.1
Ersetze durch .
Schritt 4.3.2
Addiere und .
Schritt 4.3.3
Ziehe das Minuszeichen vor den Bruch.
Schritt 4.4
Bestimme den Integrationsfaktor .
Schritt 5
Schritt 5.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5.3
Mutltipliziere mit .
Schritt 5.4
Das Integral von nach ist .
Schritt 5.5
Vereinfache.
Schritt 5.6
Vereinfache jeden Term.
Schritt 5.6.1
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 5.6.2
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 5.6.3
Entferne den Absolutwert in , da Exponentation mit geradzahligen Potenzen immer in positiven Werten resultiert.
Schritt 5.6.4
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 6
Schritt 6.1
Mutltipliziere mit .
Schritt 6.2
Mutltipliziere mit .
Schritt 6.3
Mutltipliziere mit .
Schritt 6.4
Kürze den gemeinsamen Faktor von .
Schritt 6.4.1
Faktorisiere aus heraus.
Schritt 6.4.2
Faktorisiere aus heraus.
Schritt 6.4.3
Kürze den gemeinsamen Faktor.
Schritt 6.4.4
Forme den Ausdruck um.
Schritt 7
Setze gleich dem Integral von .
Schritt 8
Schritt 8.1
Wende die Konstantenregel an.
Schritt 8.2
Kombiniere und .
Schritt 9
Da das Integral von eine Integrationskonstante enthalten wird, können wir durch ersetzen.
Schritt 10
Setze .
Schritt 11
Schritt 11.1
Differenziere nach .
Schritt 11.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 11.3
Berechne .
Schritt 11.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 11.3.2
Schreibe als um.
Schritt 11.3.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 11.3.4
Mutltipliziere mit .
Schritt 11.3.5
Mutltipliziere mit .
Schritt 11.4
Differenziere unter Anwendung der Funktionsregel, die besagt, dass die Ableitung von ist.
Schritt 11.5
Vereinfache.
Schritt 11.5.1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 11.5.2
Kombiniere und .
Schritt 11.5.3
Stelle die Terme um.
Schritt 12
Schritt 12.1
Löse nach auf.
Schritt 12.1.1
Bringe alle Terme, die Variablen enthalten, auf die linke Seite der Gleichung.
Schritt 12.1.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 12.1.1.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 12.1.1.3
Vereinfache jeden Term.
Schritt 12.1.1.3.1
Wende das Distributivgesetz an.
Schritt 12.1.1.3.2
Mutltipliziere mit .
Schritt 12.1.1.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 12.1.1.4.1
Subtrahiere von .
Schritt 12.1.1.4.2
Addiere und .
Schritt 12.1.1.5
Vereinfache jeden Term.
Schritt 12.1.1.5.1
Kürze den gemeinsamen Teiler von und .
Schritt 12.1.1.5.1.1
Faktorisiere aus heraus.
Schritt 12.1.1.5.1.2
Kürze die gemeinsamen Faktoren.
Schritt 12.1.1.5.1.2.1
Faktorisiere aus heraus.
Schritt 12.1.1.5.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 12.1.1.5.1.2.3
Forme den Ausdruck um.
Schritt 12.1.1.5.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 12.1.2
Addiere zu beiden Seiten der Gleichung.
Schritt 13
Schritt 13.1
Integriere beide Seiten von .
Schritt 13.2
Berechne .
Schritt 13.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 13.4
Das Integral von nach ist .
Schritt 13.5
Vereinfache.
Schritt 14
Setze in ein.
Schritt 15
Schritt 15.1
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 15.2
Entferne den Absolutwert in , da Exponentation mit geradzahligen Potenzen immer in positiven Werten resultiert.