Analysis Beispiele

Löse die Differntialgleichung. (dy)/(dx)=(x^2+1)/(y^2-1)
Schritt 1
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1.1
Schreibe als um.
Schritt 1.2.1.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 1.2.2
Mutltipliziere mit .
Schritt 1.2.3
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.3.1
Schreibe als um.
Schritt 1.2.3.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 1.2.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.4.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.4.2
Forme den Ausdruck um.
Schritt 1.2.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.5.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.5.2
Dividiere durch .
Schritt 1.3
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.2.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.2.3
Wende die Konstantenregel an.
Schritt 2.2.4
Vereinfache.
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.3
Wende die Konstantenregel an.
Schritt 2.3.4
Vereinfache.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.