Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 2.3.1.1
Es sei . Ermittle .
Schritt 2.3.1.1.1
Differenziere .
Schritt 2.3.1.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.1.1.4
Mutltipliziere mit .
Schritt 2.3.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.2
Kombiniere und .
Schritt 2.3.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.4
Das Integral von nach ist .
Schritt 2.3.5
Vereinfache.
Schritt 2.3.6
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 4
Schritt 4.1
Schreibe die Gleichung als um.
Schritt 4.2
Vereinfache jeden Term.
Schritt 4.2.1
Mutltipliziere mit .
Schritt 4.2.2
Alles, was mit potenziert wird, ist .
Schritt 4.2.3
Mutltipliziere mit .
Schritt 4.3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 4.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.3.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4.3.3
Kombiniere und .
Schritt 4.3.4
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4.3.5
Vereinfache den Zähler.
Schritt 4.3.5.1
Mutltipliziere mit .
Schritt 4.3.5.2
Subtrahiere von .
Schritt 5
Schritt 5.1
Ersetze durch .
Schritt 5.2
Kombiniere und .