Analysis Beispiele

Löse die Differntialgleichung. (cos(x)sin(x)-xy^2)dx+y(1-x^2)dy=0
Schritt 1
Ermittle , wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere nach .
Schritt 1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Subtrahiere von .
Schritt 2
Ermittle , wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere nach .
Schritt 2.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.5
Addiere und .
Schritt 2.6
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.8
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.8.1
Mutltipliziere mit .
Schritt 2.8.2
Stelle die Faktoren von um.
Schritt 3
Prüfe, ob .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze für und für ein.
Schritt 3.2
Da gezeigt wurde, dass die beiden Seiten äquivalent sind, ist die Gleichung eine Identitätsgleichung.
ist eine Identitätsgleichung.
ist eine Identitätsgleichung.
Schritt 4
Setze gleich dem Integral von .
Schritt 5
Integriere , um zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 5.3
Schreibe als um.
Schritt 6
Da das Integral von eine Integrationskonstante enthalten wird, können wir durch ersetzen.
Schritt 7
Setze .
Schritt 8
Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Differenziere nach .
Schritt 8.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 8.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1
Kombiniere und .
Schritt 8.3.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.3.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 8.3.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 8.3.5
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.3.6
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.3.7
Mutltipliziere mit .
Schritt 8.3.8
Subtrahiere von .
Schritt 8.3.9
Kombiniere und .
Schritt 8.3.10
Kombiniere und .
Schritt 8.3.11
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.11.1
Faktorisiere aus heraus.
Schritt 8.3.11.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.11.2.1
Faktorisiere aus heraus.
Schritt 8.3.11.2.2
Kürze den gemeinsamen Faktor.
Schritt 8.3.11.2.3
Forme den Ausdruck um.
Schritt 8.3.11.2.4
Dividiere durch .
Schritt 8.4
Differenziere unter Anwendung der Funktionsregel, die besagt, dass die Ableitung von ist.
Schritt 8.5
Stelle die Terme um.
Schritt 9
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 9.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.2.1
Ordne die Faktoren in den Termen und neu an.
Schritt 9.1.2.2
Addiere und .
Schritt 9.1.2.3
Addiere und .
Schritt 10
Bestimme die Stammfunktion von , um zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Integriere beide Seiten von .
Schritt 10.2
Berechne .
Schritt 10.3
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.3.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.3.1.1
Differenziere .
Schritt 10.3.1.2
Die Ableitung von nach ist .
Schritt 10.3.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 10.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10.5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 10.6
Schreibe als um.
Schritt 10.7
Ersetze alle durch .
Schritt 11
Setze in ein.
Schritt 12
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Wende das Distributivgesetz an.
Schritt 12.2
Mutltipliziere mit .
Schritt 12.3
Kombiniere und .
Schritt 12.4
Wende das Distributivgesetz an.
Schritt 12.5
Kombiniere und .
Schritt 12.6
Kombiniere und .
Schritt 12.7
Kombiniere und .