Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 2.3.2.1
Es sei . Ermittle .
Schritt 2.3.2.1.1
Differenziere .
Schritt 2.3.2.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.2.1.4
Mutltipliziere mit .
Schritt 2.3.2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.3
Kombiniere und .
Schritt 2.3.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.5
Das Integral von nach ist .
Schritt 2.3.6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.8
Vereinfache.
Schritt 2.3.8.1
Vereinfache.
Schritt 2.3.8.2
Kombiniere und .
Schritt 2.3.9
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.