Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Differenziere nach .
Schritt 1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.4
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.4.2
Addiere und .
Schritt 2
Schritt 2.1
Differenziere nach .
Schritt 2.2
Differenziere.
Schritt 2.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3
Berechne .
Schritt 2.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Mutltipliziere mit .
Schritt 2.4
Vereinfache.
Schritt 2.4.1
Subtrahiere von .
Schritt 2.4.2
Stelle die Faktoren von um.
Schritt 3
Schritt 3.1
Setze für und für ein.
Schritt 3.2
Da gezeigt wurde, dass die beiden Seiten äquivalent sind, ist die Gleichung eine Identitätsgleichung.
ist eine Identitätsgleichung.
ist eine Identitätsgleichung.
Schritt 4
Setze gleich dem Integral von .
Schritt 5
Schritt 5.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 5.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 5.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5.5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 5.6
Vereinfache.
Schritt 5.7
Vereinfache.
Schritt 5.7.1
Kombiniere und .
Schritt 5.7.2
Kürze den gemeinsamen Teiler von und .
Schritt 5.7.2.1
Faktorisiere aus heraus.
Schritt 5.7.2.2
Kürze die gemeinsamen Faktoren.
Schritt 5.7.2.2.1
Faktorisiere aus heraus.
Schritt 5.7.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.7.2.2.3
Forme den Ausdruck um.
Schritt 5.7.2.2.4
Dividiere durch .
Schritt 5.7.3
Kombiniere und .
Schritt 5.7.4
Kombiniere und .
Schritt 5.7.5
Kürze den gemeinsamen Teiler von und .
Schritt 5.7.5.1
Faktorisiere aus heraus.
Schritt 5.7.5.2
Kürze die gemeinsamen Faktoren.
Schritt 5.7.5.2.1
Faktorisiere aus heraus.
Schritt 5.7.5.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.7.5.2.3
Forme den Ausdruck um.
Schritt 5.7.5.2.4
Dividiere durch .
Schritt 6
Da das Integral von eine Integrationskonstante enthalten wird, können wir durch ersetzen.
Schritt 7
Setze .
Schritt 8
Schritt 8.1
Differenziere nach .
Schritt 8.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 8.3
Berechne .
Schritt 8.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.3.3
Mutltipliziere mit .
Schritt 8.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 8.5
Differenziere unter Anwendung der Funktionsregel, die besagt, dass die Ableitung von ist.
Schritt 8.6
Vereinfache.
Schritt 8.6.1
Addiere und .
Schritt 8.6.2
Stelle die Terme um.
Schritt 9
Schritt 9.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Schritt 9.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 9.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 9.1.2.1
Addiere und .
Schritt 9.1.2.2
Addiere und .
Schritt 10
Schritt 10.1
Integriere beide Seiten von .
Schritt 10.2
Berechne .
Schritt 10.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10.4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 10.5
Vereinfache die Lösung.
Schritt 10.5.1
Schreibe als um.
Schritt 10.5.2
Vereinfache.
Schritt 10.5.2.1
Kombiniere und .
Schritt 10.5.2.2
Kürze den gemeinsamen Faktor von .
Schritt 10.5.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 10.5.2.2.2
Forme den Ausdruck um.
Schritt 10.5.2.3
Mutltipliziere mit .
Schritt 11
Setze in ein.