Analysis Beispiele

Löse die Differntialgleichung. xsin(y/x)(dy)/(dx)+x-ysin(y/x)=0
Schritt 1
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Stelle die Faktoren in um.
Schritt 1.2
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Teile jeden Ausdruck in durch .
Schritt 1.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.2.1.2
Forme den Ausdruck um.
Schritt 1.3.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.2.2.2
Dividiere durch .
Schritt 1.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.3.1.1.2
Forme den Ausdruck um.
Schritt 1.3.3.1.2
Separiere Brüche.
Schritt 1.3.3.1.3
Wandle von nach um.
Schritt 1.3.3.1.4
Dividiere durch .
Schritt 1.3.3.1.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.3.1.5.1
Kürze den gemeinsamen Faktor.
Schritt 1.3.3.1.5.2
Forme den Ausdruck um.
Schritt 2
Es gilt . Ersetze für .
Schritt 3
Löse nach auf.
Schritt 4
Verwende die Produktregel um die Ableitung von nach zu finden.
Schritt 5
Ersetze durch .
Schritt 6
Löse die substituierte Differentialgleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.1.1.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1.1.2.1
Subtrahiere von .
Schritt 6.1.1.1.2.2
Addiere und .
Schritt 6.1.1.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1.2.1
Teile jeden Ausdruck in durch .
Schritt 6.1.1.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.1.1.2.2.1.2
Dividiere durch .
Schritt 6.1.1.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1.2.3.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.1.2
Multipliziere beide Seiten mit .
Schritt 6.1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.3.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 6.1.3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.3.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 6.1.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.1.3.2.3
Forme den Ausdruck um.
Schritt 6.1.4
Schreibe die Gleichung um.
Schritt 6.2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Integriere auf beiden Seiten.
Schritt 6.2.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1.1
Schreibe mithilfe von Sinus und Kosinus um.
Schritt 6.2.2.1.2
Multipliziere mit dem Kehrwert des Bruchs, um durch zu dividieren.
Schritt 6.2.2.1.3
Mutltipliziere mit .
Schritt 6.2.2.2
Das Integral von nach ist .
Schritt 6.2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6.2.3.2
Das Integral von nach ist .
Schritt 6.2.3.3
Vereinfache.
Schritt 6.2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 6.3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.1
Teile jeden Ausdruck in durch .
Schritt 6.3.1.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.2.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 6.3.1.2.2
Dividiere durch .
Schritt 6.3.1.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.3.1.1
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 6.3.1.3.1.2
Dividiere durch .
Schritt 6.3.1.3.1.3
Bringe die negative Eins aus dem Nenner von .
Schritt 6.3.1.3.1.4
Schreibe als um.
Schritt 6.3.2
Wende den inversen Kosinus auf beide Seiten der Gleichung an, um aus dem Kosinus herauszuziehen.
Schritt 6.4
Vereinfache die Konstante der Integration.
Schritt 7
Ersetze durch .
Schritt 8
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Multipliziere beide Seiten mit .
Schritt 8.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.1.1.2
Forme den Ausdruck um.
Schritt 8.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.2.1
Stelle die Faktoren in um.