Analysis Beispiele

Löse die Differntialgleichung. (x^2+1)(dy)/(dx)+4xy=x , y(2)=1
,
Schritt 1
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1.1
Wende das Distributivgesetz an.
Schritt 1.1.1.2
Mutltipliziere mit .
Schritt 1.1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.1.3
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.3.1
Faktorisiere aus heraus.
Schritt 1.1.3.2
Potenziere mit .
Schritt 1.1.3.3
Faktorisiere aus heraus.
Schritt 1.1.3.4
Faktorisiere aus heraus.
Schritt 1.1.4
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.1
Teile jeden Ausdruck in durch .
Schritt 1.1.4.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.4.2.1.2
Dividiere durch .
Schritt 1.1.4.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.3.1
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.1.4.3.2
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.4.3.2.1
Potenziere mit .
Schritt 1.1.4.3.2.2
Faktorisiere aus heraus.
Schritt 1.1.4.3.2.3
Faktorisiere aus heraus.
Schritt 1.1.4.3.2.4
Faktorisiere aus heraus.
Schritt 1.2
Ordne die Faktoren neu an.
Schritt 1.3
Multipliziere beide Seiten mit .
Schritt 1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.4.1
Faktorisiere aus heraus.
Schritt 1.4.2
Kürze den gemeinsamen Faktor.
Schritt 1.4.3
Forme den Ausdruck um.
Schritt 1.5
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.1
Differenziere .
Schritt 2.2.1.1.2
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.2.1.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.2.1.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.1.1.3.3
Mutltipliziere mit .
Schritt 2.2.1.1.4
Subtrahiere von .
Schritt 2.2.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.2.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.2.1
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.2.2
Mutltipliziere mit .
Schritt 2.2.2.3
Bringe auf die linke Seite von .
Schritt 2.2.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.5
Das Integral von nach ist .
Schritt 2.2.6
Vereinfache.
Schritt 2.2.7
Ersetze alle durch .
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1.1
Differenziere .
Schritt 2.3.1.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.1.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.1.1.5
Addiere und .
Schritt 2.3.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.2.1
Mutltipliziere mit .
Schritt 2.3.2.2
Bringe auf die linke Seite von .
Schritt 2.3.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.4
Das Integral von nach ist .
Schritt 2.3.5
Vereinfache.
Schritt 2.3.6
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.2
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.1
Kombiniere und .
Schritt 3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.1.1.2.2
Faktorisiere aus heraus.
Schritt 3.2.1.1.2.3
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.2.4
Forme den Ausdruck um.
Schritt 3.2.1.1.3
Multipliziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.3.1
Mutltipliziere mit .
Schritt 3.2.1.1.3.2
Mutltipliziere mit .
Schritt 3.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.1
Kombiniere und .
Schritt 3.2.2.1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.2.2.1.3
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.3.1
Kombiniere und .
Schritt 3.2.2.1.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.2.2.1.3.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.3.3.1
Faktorisiere aus heraus.
Schritt 3.2.2.1.3.3.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.1.3.3.3
Forme den Ausdruck um.
Schritt 3.2.2.1.4
Bringe auf die linke Seite von .
Schritt 3.2.2.1.5
Vereinfache durch Ausmultiplizieren.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.5.1
Wende das Distributivgesetz an.
Schritt 3.2.2.1.5.2
Mutltipliziere mit .
Schritt 3.3
Bringe alle Terme, die einen Logarithmus enthalten, auf die linke Seite der Gleichung.
Schritt 3.4
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1.1.1
Vereinfache , indem du in den Logarithmus ziehst.
Schritt 3.4.1.1.2
Entferne den Absolutwert in , da Exponentation mit geradzahligen Potenzen immer in positiven Werten resultiert.
Schritt 3.4.1.2
Wende die Produktregel für Logarithmen an, .
Schritt 3.5
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 3.6
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3.7
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.1
Schreibe die Gleichung als um.
Schritt 3.7.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.2.1
Teile jeden Ausdruck in durch .
Schritt 3.7.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.7.2.2.1.2
Dividiere durch .
Schritt 3.7.3
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 3.7.4
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.7.5
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.5.1
Teile jeden Ausdruck in durch .
Schritt 3.7.5.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.5.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.5.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.7.5.2.1.2
Dividiere durch .
Schritt 3.7.5.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.5.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.7.5.3.1.1
Vereinfache .
Schritt 3.7.5.3.1.2
Dividieren zweier negativer Zahlen ergibt eine positive Zahl.
Schritt 3.7.5.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 4
Gruppiere die konstanten Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Vereinfache die Konstante der Integration.
Schritt 4.2
Kombiniere Konstanten mit Plus oder Minus.
Schritt 5
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Schreibe die Gleichung als um.
Schritt 6.2
Multipliziere beide Seiten mit .
Schritt 6.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.1.1
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.1.1.1
Potenziere mit .
Schritt 6.3.1.1.1.2
Addiere und .
Schritt 6.3.1.1.1.3
Potenziere mit .
Schritt 6.3.1.1.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.1.2.1
Kombiniere und .
Schritt 6.3.1.1.2.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 6.3.1.1.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6.3.1.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.1.1.3.2
Forme den Ausdruck um.
Schritt 6.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1
Mutltipliziere mit .
Schritt 6.4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 6.4.2
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.4.2.1.1.2
Forme den Ausdruck um.
Schritt 6.4.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.2.1
Mutltipliziere mit .
Schritt 6.4.3
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.3.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.4.3.2
Subtrahiere von .
Schritt 7
Setze für in ein und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze durch .
Schritt 7.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Kombiniere und .
Schritt 7.2.2
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 7.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.2.4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.4.1
Schreibe als um.
Schritt 7.2.4.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.4.2.1
Wende das Distributivgesetz an.
Schritt 7.2.4.2.2
Wende das Distributivgesetz an.
Schritt 7.2.4.2.3
Wende das Distributivgesetz an.
Schritt 7.2.4.3
Vereinfache und fasse gleichartige Terme zusammen.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.4.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.4.3.1.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.4.3.1.1.1
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 7.2.4.3.1.1.2
Addiere und .
Schritt 7.2.4.3.1.2
Mutltipliziere mit .
Schritt 7.2.4.3.1.3
Mutltipliziere mit .
Schritt 7.2.4.3.1.4
Mutltipliziere mit .
Schritt 7.2.4.3.2
Addiere und .
Schritt 7.2.4.4
Addiere und .
Schritt 7.3
Multipliziere den Zähler mit dem Kehrwert des Nenners.
Schritt 7.4
Mutltipliziere mit .
Schritt 7.5
Bringe auf die linke Seite von .