Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 2.3.2.1
Es sei . Ermittle .
Schritt 2.3.2.1.1
Differenziere .
Schritt 2.3.2.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.2.1.4
Mutltipliziere mit .
Schritt 2.3.2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.3
Kombiniere und .
Schritt 2.3.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.5
Vereinfache.
Schritt 2.3.5.1
Kombiniere und .
Schritt 2.3.5.2
Kürze den gemeinsamen Faktor von .
Schritt 2.3.5.2.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.5.2.2
Forme den Ausdruck um.
Schritt 2.3.5.3
Mutltipliziere mit .
Schritt 2.3.6
Das Integral von nach ist .
Schritt 2.3.7
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.