Analysis Beispiele

Löse die Differntialgleichung. (dy)/(dx)=e^(y+x)
Schritt 1
Es sei . Ersetze für alle .
Schritt 2
Finde durch Differenzierung von .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere unter Anwendung der Kettenregel, die besagt, dass ist , mit und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Um die Kettenregel anzuwenden, ersetze durch .
Schritt 2.1.2
Differenziere unter Anwendung der Exponentialregel, die besagt, dass gleich ist, wobei =.
Schritt 2.1.3
Ersetze alle durch .
Schritt 2.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3
Schreibe als um.
Schritt 2.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3
Ersetze durch .
Schritt 4
Setze die Ableitung wieder in die Differentialgleichung ein.
Schritt 5
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Addiere zu beiden Seiten der Gleichung.
Schritt 5.1.2
Multipliziere beide Seiten mit .
Schritt 5.1.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.1.3.1.1.2
Forme den Ausdruck um.
Schritt 5.1.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.2.1.1
Wende das Distributivgesetz an.
Schritt 5.1.3.2.1.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.2.1.2.1
Mutltipliziere mit .
Schritt 5.1.3.2.1.2.2
Mutltipliziere mit .
Schritt 5.2
Multipliziere beide Seiten mit .
Schritt 5.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.3.1
Kürze den gemeinsamen Faktor.
Schritt 5.3.2
Forme den Ausdruck um.
Schritt 5.4
Schreibe die Gleichung um.
Schritt 6
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Integriere auf beiden Seiten.
Schritt 6.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Schreibe den Bruch mithilfe der Teilbruchzerlegung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1
Zerlege den Bruch und multipliziere mit dem gemeinsamen Nenner durch.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.1.1
Faktorisiere aus heraus.
Schritt 6.2.1.1.1.2
Potenziere mit .
Schritt 6.2.1.1.1.3
Faktorisiere aus heraus.
Schritt 6.2.1.1.1.4
Faktorisiere aus heraus.
Schritt 6.2.1.1.2
Bilde für jeden Faktor im Nenner einen neuen Bruch mit dem Faktor als Nenner und einem unbekannten Wert als Zähler. Da der Faktor im Nenner linear ist, setze eine einzelne Variable für den Zähler ein .
Schritt 6.2.1.1.3
Multipliziere jeden Bruch in der Gleichung mit dem Nenner des ursprünglichen Ausdrucks. In diesem Fall ist der Nenner gleich .
Schritt 6.2.1.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.1.1.4.2
Forme den Ausdruck um.
Schritt 6.2.1.1.5
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.5.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.1.1.5.2
Forme den Ausdruck um.
Schritt 6.2.1.1.6
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.6.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.6.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.1.1.6.1.2
Dividiere durch .
Schritt 6.2.1.1.6.2
Wende das Distributivgesetz an.
Schritt 6.2.1.1.6.3
Mutltipliziere mit .
Schritt 6.2.1.1.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.1.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.1.1.6.4.2
Dividiere durch .
Schritt 6.2.1.1.7
Bewege .
Schritt 6.2.1.2
Schreibe Gleichungen für die Teilbruchvariablen und benutze sie, um ein Gleichungssystem aufzustellen.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.2.1
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten von jeder Seite der Gleichung. Damit die Gleichung gilt, müssen äquivalente Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 6.2.1.2.2
Erzeuge eine Gleichung für die Variablen der Partialbrüche durch Gleichsetzen der Koeffizienten der Terme, die nicht enthalten. Damit die Gleichung gilt, müssen die äquivalenten Koeffizienten auf jeder Seite der Gleichung gleich sein.
Schritt 6.2.1.2.3
Stelle das Gleichungssystem auf, um die Koeffizienten der Partialbrüche zu ermitteln.
Schritt 6.2.1.3
Löse das Gleichungssystem.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.3.1
Schreibe die Gleichung als um.
Schritt 6.2.1.3.2
Ersetze alle Vorkommen von durch in jeder Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.3.2.1
Ersetze alle in durch .
Schritt 6.2.1.3.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.3.2.2.1
Entferne die Klammern.
Schritt 6.2.1.3.3
Löse in nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1.3.3.1
Schreibe die Gleichung als um.
Schritt 6.2.1.3.3.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.2.1.3.4
Löse das Gleichungssystem.
Schritt 6.2.1.3.5
Liste alle Lösungen auf.
Schritt 6.2.1.4
Ersetze jeden der Teilbruchkoeffizienten in durch die Werte, die für und ermittelt wurden.
Schritt 6.2.1.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 6.2.2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 6.2.3
Das Integral von nach ist .
Schritt 6.2.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 6.2.5
Sei . Dann ist . Forme um unter Vewendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.5.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.5.1.1
Differenziere .
Schritt 6.2.5.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 6.2.5.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 6.2.5.1.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 6.2.5.1.5
Addiere und .
Schritt 6.2.5.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 6.2.6
Das Integral von nach ist .
Schritt 6.2.7
Vereinfache.
Schritt 6.3
Wende die Konstantenregel an.
Schritt 6.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 7
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Nutze die Quotienteneigenschaft von Logarithmen, .
Schritt 7.2
Stelle und um.
Schritt 7.3
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 7.4
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 7.5
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.1
Schreibe die Gleichung als um.
Schritt 7.5.2
Multipliziere beide Seiten mit .
Schritt 7.5.3
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 7.5.3.1.2
Forme den Ausdruck um.
Schritt 7.5.4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.5.4.1
Stelle die Faktoren in um.
Schritt 7.5.4.2
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 8
Gruppiere die konstanten Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Stelle die Terme um.
Schritt 8.2
Schreibe als um.
Schritt 8.3
Stelle und um.
Schritt 8.4
Kombiniere Konstanten mit Plus oder Minus.
Schritt 9
Ersetze alle durch .
Schritt 10
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Berechne von beiden Seiten der Gleichung den natürlichen Logarithmus, um die Variable vom Exponenten zu entfernen.
Schritt 10.2
Multipliziere die linke Seite aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.2.1
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 10.2.2
Der natürliche Logarithmus von ist .
Schritt 10.2.3
Mutltipliziere mit .
Schritt 10.3
Multipliziere die rechte Seite aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.3.1
Schreibe als um.
Schritt 10.3.2
Schreibe als um.
Schritt 10.3.3
Zerlege durch Herausziehen von aus dem Logarithmus.
Schritt 10.3.4
Der natürliche Logarithmus von ist .
Schritt 10.3.5
Mutltipliziere mit .
Schritt 10.4
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.4.1
Wende die Produktregel für Logarithmen an, .
Schritt 10.5
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.5.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 10.5.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.5.2.1
Subtrahiere von .
Schritt 10.5.2.2
Addiere und .