Analysis Beispiele

Löse die Differntialgleichung. y(x+y+1)dx+x(x+3y+2)dy=0
Schritt 1
Ermittle , wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere nach .
Schritt 1.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 1.3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.3.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.3
Addiere und .
Schritt 1.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.3.6
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.6.1
Addiere und .
Schritt 1.3.6.2
Mutltipliziere mit .
Schritt 1.3.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.8
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.8.1
Mutltipliziere mit .
Schritt 1.3.8.2
Addiere und .
Schritt 2
Ermittle , wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere nach .
Schritt 2.2
Differenziere unter Anwendung der Produktregel, die besagt, dass gleich ist mit und .
Schritt 2.3
Differenziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.3
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.4
Addiere und .
Schritt 2.3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.6
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.1
Addiere und .
Schritt 2.3.6.2
Mutltipliziere mit .
Schritt 2.3.7
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.8
Vereinfache durch Addieren von Termen.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.8.1
Mutltipliziere mit .
Schritt 2.3.8.2
Addiere und .
Schritt 3
Prüfe, ob .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze für und für ein.
Schritt 3.2
Da die linke Seite nicht gleich der rechten Seite ist, ist die Gleichung nicht identisch.
ist keine Identitätsgleichung.
ist keine Identitätsgleichung.
Schritt 4
Bestimme den Integrationsfaktor .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Ersetze durch .
Schritt 4.2
Ersetze durch .
Schritt 4.3
Ersetze durch .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Ersetze durch .
Schritt 4.3.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Wende das Distributivgesetz an.
Schritt 4.3.2.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.2.1
Mutltipliziere mit .
Schritt 4.3.2.2.2
Mutltipliziere mit .
Schritt 4.3.2.3
Subtrahiere von .
Schritt 4.3.2.4
Subtrahiere von .
Schritt 4.3.2.5
Subtrahiere von .
Schritt 4.3.3
Ersetze durch .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.3.1
Kürze den gemeinsamen Faktor.
Schritt 4.3.3.2
Forme den Ausdruck um.
Schritt 4.4
Bestimme den Integrationsfaktor .
Schritt 5
Berechne das Integral .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Das Integral von nach ist .
Schritt 5.2
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache.
Schritt 5.2.2
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 6
Multipliziere beide Seiten von mit dem Integrationsfaktor .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Mutltipliziere mit .
Schritt 6.2
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Bewege .
Schritt 6.2.2
Mutltipliziere mit .
Schritt 6.3
Wende das Distributivgesetz an.
Schritt 6.4
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1.1.1
Potenziere mit .
Schritt 6.4.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 6.4.1.2
Addiere und .
Schritt 6.4.2
Mutltipliziere mit .
Schritt 6.5
Mutltipliziere mit .
Schritt 6.6
Wende das Distributivgesetz an.
Schritt 6.7
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.7.1
Mutltipliziere mit .
Schritt 6.7.2
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 6.7.3
Bringe auf die linke Seite von .
Schritt 6.8
Wende das Distributivgesetz an.
Schritt 6.9
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.9.1
Bewege .
Schritt 6.9.2
Mutltipliziere mit .
Schritt 7
Setze gleich dem Integral von .
Schritt 8
Integriere , um zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 8.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 8.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 8.4
Wende die Konstantenregel an.
Schritt 8.5
Kombiniere und .
Schritt 8.6
Wende die Konstantenregel an.
Schritt 8.7
Vereinfache.
Schritt 8.8
Stelle die Terme um.
Schritt 9
Da das Integral von eine Integrationskonstante enthalten wird, können wir durch ersetzen.
Schritt 10
Setze .
Schritt 11
Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.1
Differenziere nach .
Schritt 11.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 11.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.3.1
Kombiniere und .
Schritt 11.3.2
Kombiniere und .
Schritt 11.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 11.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 11.3.5
Kombiniere und .
Schritt 11.3.6
Kombiniere und .
Schritt 11.3.7
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.3.7.1
Kürze den gemeinsamen Faktor.
Schritt 11.3.7.2
Dividiere durch .
Schritt 11.4
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 11.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 11.4.3
Bringe auf die linke Seite von .
Schritt 11.5
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 11.5.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 11.5.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 11.5.3
Bringe auf die linke Seite von .
Schritt 11.6
Differenziere unter Anwendung der Funktionsregel, die besagt, dass die Ableitung von ist.
Schritt 11.7
Stelle die Terme um.
Schritt 12
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 12.1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 12.1.3
Subtrahiere von beiden Seiten der Gleichung.
Schritt 12.1.4
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.4.1
Subtrahiere von .
Schritt 12.1.4.2
Addiere und .
Schritt 12.1.4.3
Ordne die Faktoren in den Termen und neu an.
Schritt 12.1.4.4
Subtrahiere von .
Schritt 12.1.4.5
Addiere und .
Schritt 12.1.4.6
Subtrahiere von .
Schritt 13
Bestimme die Stammfunktion von , um zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 13.1
Integriere beide Seiten von .
Schritt 13.2
Berechne .
Schritt 13.3
Das Integral von nach ist .
Schritt 13.4
Addiere und .
Schritt 14
Setze in ein.
Schritt 15
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 15.1
Kombiniere und .
Schritt 15.2
Kombiniere und .