Analysis Beispiele

Löse die Differntialgleichung. (dy)/(dx)=(cos(3x))/(sin(2y))
Schritt 1
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2
Forme den Ausdruck um.
Schritt 1.3
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1.1
Differenziere .
Schritt 2.2.1.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.1.1.4
Mutltipliziere mit .
Schritt 2.2.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.2.2
Kombiniere und .
Schritt 2.2.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.2.4
Das Integral von nach ist .
Schritt 2.2.5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.5.1
Vereinfache.
Schritt 2.2.5.2
Kombiniere und .
Schritt 2.2.6
Ersetze alle durch .
Schritt 2.2.7
Stelle die Terme um.
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1.1
Differenziere .
Schritt 2.3.1.1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.1.1.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.1.1.4
Mutltipliziere mit .
Schritt 2.3.1.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.2
Kombiniere und .
Schritt 2.3.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.4
Das Integral von nach ist .
Schritt 2.3.5
Vereinfache.
Schritt 2.3.6
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Wende die Doppelwinkelfunktion an, um nach zu transformieren.
Schritt 3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Wende das Distributivgesetz an.
Schritt 3.2.1.2
Mutltipliziere mit .
Schritt 3.2.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.3.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.1.3.2
Faktorisiere aus heraus.
Schritt 3.2.1.3.3
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.3.4
Forme den Ausdruck um.
Schritt 3.2.1.4
Multipliziere.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.4.1
Mutltipliziere mit .
Schritt 3.2.1.4.2
Mutltipliziere mit .
Schritt 3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.1
Wende die Dreifachwinkelfunktion für den Sinus an.
Schritt 3.3.1.2
Wende das Distributivgesetz an.
Schritt 3.3.1.3
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.3.1
Kombiniere und .
Schritt 3.3.1.3.2
Kombiniere und .
Schritt 3.3.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1.4.1
Faktorisiere aus heraus.
Schritt 3.3.1.4.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.4.3
Forme den Ausdruck um.
Schritt 3.3.1.5
Ziehe das Minuszeichen vor den Bruch.
Schritt 3.4
Löse die Gleichung nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.4.2
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.4.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.4.3.2
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 3.4.3.3
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.4.3.4
Wende den inversen Sinus auf beide Seiten der Gleichung an, um aus dem Sinus herauszuziehen.
Schritt 3.4.3.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Vereinfache die Konstante der Integration.