Analysis Beispiele

Löse die Differntialgleichung. 3x(xy-2)dx+(x^3+2y)dy=0
Schritt 1
Ermittle , wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Differenziere nach .
Schritt 1.2
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.4
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.5
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.6
Mutltipliziere mit .
Schritt 1.7
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.8
Addiere und .
Schritt 1.9
Potenziere mit .
Schritt 1.10
Potenziere mit .
Schritt 1.11
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 1.12
Addiere und .
Schritt 2
Ermittle , wenn .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Differenziere nach .
Schritt 2.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.5
Addiere und .
Schritt 3
Prüfe, ob .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Setze für und für ein.
Schritt 3.2
Da gezeigt wurde, dass die beiden Seiten äquivalent sind, ist die Gleichung eine Identitätsgleichung.
ist eine Identitätsgleichung.
ist eine Identitätsgleichung.
Schritt 4
Setze gleich dem Integral von .
Schritt 5
Integriere , um zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5.2
Multipliziere aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Wende das Distributivgesetz an.
Schritt 5.2.2
Entferne die Klammern.
Schritt 5.2.3
Stelle und um.
Schritt 5.2.4
Potenziere mit .
Schritt 5.2.5
Potenziere mit .
Schritt 5.2.6
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.2.7
Addiere und .
Schritt 5.3
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 5.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5.5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 5.6
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 5.7
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 5.8
Vereinfache.
Schritt 5.9
Stelle die Terme um.
Schritt 6
Da das Integral von eine Integrationskonstante enthalten wird, können wir durch ersetzen.
Schritt 7
Setze .
Schritt 8
Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Differenziere nach .
Schritt 8.2
Differenziere unter Anwendung der Summenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.1
Kombiniere und .
Schritt 8.2.1.2
Kombiniere und .
Schritt 8.2.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 8.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.3.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 8.3.3
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 8.3.4
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 8.3.5
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 8.3.6
Mutltipliziere mit .
Schritt 8.3.7
Addiere und .
Schritt 8.3.8
Kombiniere und .
Schritt 8.3.9
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.9.1
Kürze den gemeinsamen Faktor.
Schritt 8.3.9.2
Dividiere durch .
Schritt 8.4
Differenziere unter Anwendung der Funktionsregel, die besagt, dass die Ableitung von ist.
Schritt 8.5
Stelle die Terme um.
Schritt 9
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 9.1.2
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Tippen, um mehr Schritte zu sehen ...
Schritt 9.1.2.1
Subtrahiere von .
Schritt 9.1.2.2
Addiere und .
Schritt 10
Bestimme die Stammfunktion von , um zu finden.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.1
Integriere beide Seiten von .
Schritt 10.2
Berechne .
Schritt 10.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 10.4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 10.5
Vereinfache die Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.5.1
Schreibe als um.
Schritt 10.5.2
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 10.5.2.1
Kombiniere und .
Schritt 10.5.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 10.5.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 10.5.2.2.2
Forme den Ausdruck um.
Schritt 10.5.2.3
Mutltipliziere mit .
Schritt 11
Setze in ein.
Schritt 12
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 12.1.1
Kombiniere und .
Schritt 12.1.2
Kombiniere und .
Schritt 12.2
Wende das Distributivgesetz an.
Schritt 12.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 12.3.1
Kürze den gemeinsamen Faktor.
Schritt 12.3.2
Forme den Ausdruck um.
Schritt 12.4
Mutltipliziere mit .