Analysis Beispiele

Löse die Differntialgleichung. (dy)/(dx)=(xsin(x)-ycos(x))/(sin(x))
Schritt 1
Schreibe die Differentialgleichung als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe die Gleichung als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Zerlege den Bruch in zwei Brüche.
Schritt 1.1.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 1.2
Faktorisiere aus heraus.
Schritt 1.3
Stelle und um.
Schritt 2
Der Integrationsfaktor ist definiert durch die Formel , wobei gilt.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Stelle das Integral auf.
Schritt 2.2
Integriere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1.1
Schreibe als um.
Schritt 2.2.1.2
Ziehe das Minuszeichen vor den Bruch.
Schritt 2.2.1.3
Wandle von nach um.
Schritt 2.2.1.4
Mutltipliziere mit .
Schritt 2.2.1.5
Mutltipliziere mit .
Schritt 2.2.2
Das Integral von nach ist .
Schritt 2.3
Entferne die Konstante der Integration.
Schritt 2.4
Exponentialfunktion und Logarithmusfunktion sind zueinander inverse Funktionen.
Schritt 3
Multipliziere jeden Ausdruck mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere jeden Ausdruck mit .
Schritt 3.2
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Faktorisiere aus heraus.
Schritt 3.2.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.2.3
Forme den Ausdruck um.
Schritt 3.2.3
Mutltipliziere mit .
Schritt 3.2.4
Mutltipliziere mit .
Schritt 3.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.2
Forme den Ausdruck um.
Schritt 3.4
Stelle die Faktoren in um.
Schritt 4
Schreibe die linke Seite als ein Ergebnis der Produktdifferenzierung.
Schritt 5
Integriere auf beiden Seiten.
Schritt 6
Integriere die linke Seite.
Schritt 7
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 7.2
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 7.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.3.1
Mutltipliziere mit .
Schritt 7.3.2
Mutltipliziere mit .
Schritt 7.4
Das Integral von nach ist .
Schritt 7.5
Schreibe als um.
Schritt 8
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.1
Teile jeden Ausdruck in durch .
Schritt 8.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 8.2.1.2
Dividiere durch .
Schritt 8.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1.1
Separiere Brüche.
Schritt 8.3.1.2
Wandle von nach um.
Schritt 8.3.1.3
Dividiere durch .
Schritt 8.3.1.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 8.3.1.4.1
Kürze den gemeinsamen Faktor.
Schritt 8.3.1.4.2
Forme den Ausdruck um.
Schritt 8.3.1.5
Separiere Brüche.
Schritt 8.3.1.6
Wandle von nach um.
Schritt 8.3.1.7
Dividiere durch .