Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Wandle von nach um.
Schritt 2.3.2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Schritt 2.3.2.1
Es sei . Ermittle .
Schritt 2.3.2.1.1
Differenziere .
Schritt 2.3.2.1.2
Differenziere.
Schritt 2.3.2.1.2.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.2.1.2.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.2.1.3
Berechne .
Schritt 2.3.2.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.2.1.3.2
Die Ableitung von nach ist .
Schritt 2.3.2.1.4
Subtrahiere von .
Schritt 2.3.2.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.3
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3.5
Schreibe als um.
Schritt 2.3.6
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.