Analysis Beispiele

Löse die Differntialgleichung. (z+5)/(4z+19)dz=dy
Schritt 1
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Wende die Konstantenregel an.
Schritt 2.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1
Dividiere durch .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.1.1
Stelle die zu dividierenden Polynome auf. Wenn es nicht für jeden Exponenten einen Term gibt, setze einen ein mit dem Wert .
++
Schritt 2.3.1.2
Dividiere den Term höchster Ordnung im Dividend durch den Term höchster Ordnung im Divisor .
++
Schritt 2.3.1.3
Multipliziere den neuen Bruchterm mit dem Teiler.
++
++
Schritt 2.3.1.4
Der Ausdruck muss vom Dividenden abgezogen werden, ändere also alle Vorzeichen in
++
--
Schritt 2.3.1.5
Addiere nach dem Wechsel der Vorzeichen den letzten Dividenden des ausmultiplizierten Polynoms, um den neuen Dividenden zu finden.
++
--
+
Schritt 2.3.1.6
Die endgültige Lösung ist der Quotient plus dem Rest geteilt durch den Divisor.
Schritt 2.3.2
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 2.3.3
Wende die Konstantenregel an.
Schritt 2.3.4
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.5
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.1.1
Differenziere .
Schritt 2.3.5.1.2
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.3.5.1.3
Berechne .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.3.5.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.5.1.3.3
Mutltipliziere mit .
Schritt 2.3.5.1.4
Differenziere unter Anwendung der Konstantenregel.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.5.1.4.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.5.1.4.2
Addiere und .
Schritt 2.3.5.2
Schreibe die Aufgabe mithlfe von und neu.
Schritt 2.3.6
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.6.1
Mutltipliziere mit .
Schritt 2.3.6.2
Bringe auf die linke Seite von .
Schritt 2.3.7
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 2.3.8
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.3.8.1
Mutltipliziere mit .
Schritt 2.3.8.2
Mutltipliziere mit .
Schritt 2.3.9
Das Integral von nach ist .
Schritt 2.3.10
Vereinfache.
Schritt 2.3.11
Ersetze alle durch .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.