Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Teile jeden Ausdruck in durch und vereinfache.
Schritt 1.1.1
Teile jeden Ausdruck in durch .
Schritt 1.1.2
Vereinfache die linke Seite.
Schritt 1.1.2.1
Kürze den gemeinsamen Faktor von .
Schritt 1.1.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.2.1.2
Forme den Ausdruck um.
Schritt 1.1.2.2
Kürze den gemeinsamen Faktor von .
Schritt 1.1.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.1.2.2.2
Dividiere durch .
Schritt 1.2
Ordne die Faktoren neu an.
Schritt 1.3
Multipliziere beide Seiten mit .
Schritt 1.4
Vereinfache.
Schritt 1.4.1
Kombinieren.
Schritt 1.4.2
Kürze den gemeinsamen Faktor von .
Schritt 1.4.2.1
Faktorisiere aus heraus.
Schritt 1.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.4.2.3
Forme den Ausdruck um.
Schritt 1.4.3
Mutltipliziere mit .
Schritt 1.5
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3
Integriere die rechte Seite.
Schritt 2.3.1
Vereinfache den Ausdruck.
Schritt 2.3.1.1
Kehre das Vorzeichen des Exponenten von um und ziehe es aus dem Nenner heraus.
Schritt 2.3.1.2
Multipliziere die Exponenten in .
Schritt 2.3.1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 2.3.1.2.2
Multipliziere .
Schritt 2.3.1.2.2.1
Mutltipliziere mit .
Schritt 2.3.1.2.2.2
Mutltipliziere mit .
Schritt 2.3.2
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 2.3.3
Das Integral von nach ist .
Schritt 2.3.4
Vereinfache.
Schritt 2.3.5
Stelle die Terme um.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.2
Vereinfache beide Seiten der Gleichung.
Schritt 3.2.1
Vereinfache die linke Seite.
Schritt 3.2.1.1
Vereinfache .
Schritt 3.2.1.1.1
Kombiniere und .
Schritt 3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.2.2
Forme den Ausdruck um.
Schritt 3.2.2
Vereinfache die rechte Seite.
Schritt 3.2.2.1
Vereinfache .
Schritt 3.2.2.1.1
Wende das Distributivgesetz an.
Schritt 3.2.2.1.2
Mutltipliziere mit .
Schritt 3.2.2.1.3
Stelle die Faktoren in um.
Schritt 3.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.4
Faktorisiere aus heraus.
Schritt 3.4.1
Faktorisiere aus heraus.
Schritt 3.4.2
Faktorisiere aus heraus.
Schritt 3.4.3
Faktorisiere aus heraus.
Schritt 3.4.4
Faktorisiere aus heraus.
Schritt 3.4.5
Faktorisiere aus heraus.
Schritt 3.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 3.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.