Analysis Beispiele

Löse die Differntialgleichung. xy^3dx+(y+1)e^(-x)dy=0
Schritt 1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 2
Multipliziere beide Seiten mit .
Schritt 3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Faktorisiere aus heraus.
Schritt 3.1.3
Kürze den gemeinsamen Faktor.
Schritt 3.1.4
Forme den Ausdruck um.
Schritt 3.2
Mutltipliziere mit .
Schritt 3.3
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.4.2
Faktorisiere aus heraus.
Schritt 3.4.3
Faktorisiere aus heraus.
Schritt 3.4.4
Kürze den gemeinsamen Faktor.
Schritt 3.4.5
Forme den Ausdruck um.
Schritt 3.5
Kombiniere und .
Schritt 3.6
Ziehe das Minuszeichen vor den Bruch.
Schritt 4
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Integriere auf beiden Seiten.
Schritt 4.2
Integriere die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 4.2.1.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.1.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.2.1.2.2
Mutltipliziere mit .
Schritt 4.2.2
Multipliziere .
Schritt 4.2.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1
Multipliziere mit durch Addieren der Exponenten.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1.1
Mutltipliziere mit .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.2.3.1.1.1
Potenziere mit .
Schritt 4.2.3.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.2.3.1.2
Subtrahiere von .
Schritt 4.2.3.2
Mutltipliziere mit .
Schritt 4.2.4
Zerlege das einzelne Integral in mehrere Integrale.
Schritt 4.2.5
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 4.2.6
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 4.2.7
Vereinfache.
Schritt 4.2.8
Stelle die Terme um.
Schritt 4.3
Integriere die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.1
Da konstant bezüglich ist, ziehe aus dem Integral.
Schritt 4.3.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.1
Kehre das Vorzeichen des Exponenten von um und ziehe es aus dem Nenner heraus.
Schritt 4.3.2.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 4.3.2.2.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.3.2.2.2.1
Mutltipliziere mit .
Schritt 4.3.2.2.2.2
Mutltipliziere mit .
Schritt 4.3.3
Integriere partiell durch Anwendung der Formel , mit und .
Schritt 4.3.4
Das Integral von nach ist .
Schritt 4.3.5
Vereinfache.
Schritt 4.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.