Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Kürze den gemeinsamen Faktor von .
Schritt 1.2.1
Faktorisiere aus heraus.
Schritt 1.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.2.3
Forme den Ausdruck um.
Schritt 1.3
Schreibe die Gleichung um.
Schritt 2
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Das Integral von nach ist .
Schritt 2.3
ist ein spezielles Integral. Das Integral ist die Fehlerfunktion.
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Schritt 3.1
Um nach aufzulösen, schreibe die Gleichung mithilfe der Logarithmengesetze um.
Schritt 3.2
Schreibe in eine Exponentialform indem du die Definition des Logarithmus verwendest. Wenn und positive reelle Zahlen sind und ist, dann ist gleich .
Schritt 3.3
Löse nach auf.
Schritt 3.3.1
Schreibe die Gleichung als um.
Schritt 3.3.2
Multipliziere mit .
Schritt 3.3.3
Entferne den Term mit dem absoluten Wert. Dies erzeugt ein auf der rechten Seite der Gleichung, da .
Schritt 4
Schritt 4.1
Schreibe als um.
Schritt 4.2
Stelle und um.
Schritt 4.3
Kombiniere Konstanten mit Plus oder Minus.
Schritt 5
Verwende die Anfangsbedingung um die Werte für zu finden indem für und für in ersetzt wird.
Schritt 6
Schritt 6.1
Schreibe die Gleichung als um.
Schritt 6.2
Teile jeden Ausdruck in durch und vereinfache.
Schritt 6.2.1
Teile jeden Ausdruck in durch .
Schritt 6.2.2
Vereinfache die linke Seite.
Schritt 6.2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 6.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.2.1.2
Dividiere durch .
Schritt 6.2.3
Vereinfache die rechte Seite.
Schritt 6.2.3.1
Bringe auf die linke Seite von .
Schritt 7
Schritt 7.1
Ersetze durch .
Schritt 7.2
Kombiniere und .
Schritt 7.3
Kürze den gemeinsamen Teiler von und .
Schritt 7.3.1
Faktorisiere aus heraus.
Schritt 7.3.2
Kürze die gemeinsamen Faktoren.
Schritt 7.3.2.1
Multipliziere mit .
Schritt 7.3.2.2
Kürze den gemeinsamen Faktor.
Schritt 7.3.2.3
Forme den Ausdruck um.
Schritt 7.3.2.4
Dividiere durch .