Analysis Beispiele

Löse die Differntialgleichung. (dy)/(dx)=(x^2)/y if y(0)=3
if
Schritt 1
Separiere die Variablen.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Multipliziere beide Seiten mit .
Schritt 1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.2
Forme den Ausdruck um.
Schritt 1.3
Schreibe die Gleichung um.
Schritt 2
Integriere beide Seiten.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Integriere auf beiden Seiten.
Schritt 2.2
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.3
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 2.4
Fasse die Konstanten der Integration auf der rechten Seite als zusammen.
Schritt 3
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Multipliziere beide Seiten der Gleichung mit .
Schritt 3.2
Vereinfache beide Seiten der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.1
Kombiniere und .
Schritt 3.2.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.2.2
Forme den Ausdruck um.
Schritt 3.2.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.2.1.1
Kombiniere und .
Schritt 3.2.2.1.2
Wende das Distributivgesetz an.
Schritt 3.2.2.1.3
Kombiniere und .
Schritt 3.3
Ziehe die angegebene Wurzel auf beiden Seiten der Gleichung, um den Exponenten auf der linken Seite zu eliminieren.
Schritt 3.4
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1.1
Faktorisiere aus heraus.
Schritt 3.4.1.2
Faktorisiere aus heraus.
Schritt 3.4.1.3
Faktorisiere aus heraus.
Schritt 3.4.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.4.3
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.3.1
Kombiniere und .
Schritt 3.4.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.4.4
Bringe auf die linke Seite von .
Schritt 3.4.5
Kombiniere und .
Schritt 3.4.6
Schreibe als um.
Schritt 3.4.7
Mutltipliziere mit .
Schritt 3.4.8
Vereinige und vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.8.1
Mutltipliziere mit .
Schritt 3.4.8.2
Potenziere mit .
Schritt 3.4.8.3
Potenziere mit .
Schritt 3.4.8.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.4.8.5
Addiere und .
Schritt 3.4.8.6
Schreibe als um.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.8.6.1
Benutze , um als neu zu schreiben.
Schritt 3.4.8.6.2
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.4.8.6.3
Kombiniere und .
Schritt 3.4.8.6.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.8.6.4.1
Kürze den gemeinsamen Faktor.
Schritt 3.4.8.6.4.2
Forme den Ausdruck um.
Schritt 3.4.8.6.5
Berechne den Exponenten.
Schritt 3.4.9
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.9.1
Kombiniere unter Anwendung der Produktregel für das Wurzelziehen.
Schritt 3.4.9.2
Mutltipliziere mit .
Schritt 3.5
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.5.1
Verwende zunächst den positiven Wert des , um die erste Lösung zu finden.
Schritt 3.5.2
Als Nächstes verwende den negativen Wert von , um die zweite Lösung zu finden.
Schritt 3.5.3
Die vollständige Lösung ist das Ergebnis des positiven und des negativen Teils der Lösung.
Schritt 4
Vereinfache die Konstante der Integration.
Schritt 5
Da positiv in der Anfangsbedingung ist, betrachte nur um zu finden. Ersetze für und für .
Schritt 6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Schreibe die Gleichung als um.
Schritt 6.2
Multipliziere beide Seiten mit .
Schritt 6.3
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.1.1
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.1.1.1
zu einer beliebigen, positiven Potenz zu erheben ergibt .
Schritt 6.3.1.1.1.2
Addiere und .
Schritt 6.3.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.3.1.1.2.2
Forme den Ausdruck um.
Schritt 6.3.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.3.2.1
Mutltipliziere mit .
Schritt 6.4
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Um die Wurzel auf der linken Seite der Gleichung zu entfernen, quadriere beide Seiten der Gleichung.
Schritt 6.4.2
Vereinfache jede Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.1
Benutze , um als neu zu schreiben.
Schritt 6.4.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.2.1.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.2.1.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.4.2.2.1.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.2.1.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.4.2.2.1.1.2.2
Forme den Ausdruck um.
Schritt 6.4.2.2.1.2
Vereinfache.
Schritt 6.4.2.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.2.3.1
Potenziere mit .
Schritt 6.4.3
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.3.1
Teile jeden Ausdruck in durch .
Schritt 6.4.3.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.3.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.3.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.4.3.2.1.2
Dividiere durch .
Schritt 6.4.3.3
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.3.3.1
Kürze den gemeinsamen Teiler von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.3.3.1.1
Faktorisiere aus heraus.
Schritt 6.4.3.3.1.2
Kürze die gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.3.3.1.2.1
Faktorisiere aus heraus.
Schritt 6.4.3.3.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 6.4.3.3.1.2.3
Forme den Ausdruck um.
Schritt 7
Setze für in ein und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.1
Ersetze durch .
Schritt 7.2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.1
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 7.2.2
Kombiniere und .
Schritt 7.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 7.2.4
Bringe auf die linke Seite von .
Schritt 7.2.5
Kombiniere und .
Schritt 7.2.6
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.6.1
Vereinfache den Ausdruck durch Kürzen der gemeinsamen Faktoren.
Tippen, um mehr Schritte zu sehen ...
Schritt 7.2.6.1.1
Faktorisiere aus heraus.
Schritt 7.2.6.1.2
Faktorisiere aus heraus.
Schritt 7.2.6.1.3
Kürze den gemeinsamen Faktor.
Schritt 7.2.6.1.4
Forme den Ausdruck um.
Schritt 7.2.6.2
Dividiere durch .