Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Differenziere beide Seiten der Gleichung.
Schritt 2
Die Ableitung von nach ist .
Schritt 3
Schritt 3.1
Differenziere unter Anwendung der Quotientenregel, die besagt, dass gleich ist mit und .
Schritt 3.2
Differenziere.
Schritt 3.2.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.2
Mutltipliziere mit .
Schritt 3.2.3
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 3.2.4
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 3.2.5
Addiere und .
Schritt 3.2.6
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 3.2.7
Mutltipliziere mit .
Schritt 3.2.8
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 3.2.9
Mutltipliziere mit .
Schritt 3.3
Potenziere mit .
Schritt 3.4
Potenziere mit .
Schritt 3.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.6
Addiere und .
Schritt 3.7
Addiere und .
Schritt 3.8
Stelle die Terme um.
Schritt 4
Forme die Gleichung um durch Gleichsetzen der linken Seite mit der rechten Seite.
Schritt 5
Ersetze durch .