Gib eine Aufgabe ein ...
Analysis Beispiele
,
Schritt 1
Schritt 1.1
Bestimme die erste Ableitung.
Schritt 1.1.1
Bestimme die erste Ableitung.
Schritt 1.1.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.1.1.2
Berechne .
Schritt 1.1.1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.2.3
Mutltipliziere mit .
Schritt 1.1.1.3
Berechne .
Schritt 1.1.1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.3.3
Kombiniere und .
Schritt 1.1.1.3.4
Mutltipliziere mit .
Schritt 1.1.1.3.5
Kombiniere und .
Schritt 1.1.1.3.6
Kürze den gemeinsamen Teiler von und .
Schritt 1.1.1.3.6.1
Faktorisiere aus heraus.
Schritt 1.1.1.3.6.2
Kürze die gemeinsamen Faktoren.
Schritt 1.1.1.3.6.2.1
Faktorisiere aus heraus.
Schritt 1.1.1.3.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.1.1.3.6.2.3
Forme den Ausdruck um.
Schritt 1.1.1.3.6.2.4
Dividiere durch .
Schritt 1.1.1.4
Berechne .
Schritt 1.1.1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.1.1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.1.1.4.3
Mutltipliziere mit .
Schritt 1.1.1.5
Differenziere unter Anwendung der Konstantenregel.
Schritt 1.1.1.5.1
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.1.1.5.2
Addiere und .
Schritt 1.1.2
Die erste Ableitung von nach ist .
Schritt 1.2
Setze die erste Ableitung gleich , dann löse die Gleichung .
Schritt 1.2.1
Setze die erste Ableitung gleich .
Schritt 1.2.2
Faktorisiere die linke Seite der Gleichung.
Schritt 1.2.2.1
Faktorisiere aus heraus.
Schritt 1.2.2.1.1
Faktorisiere aus heraus.
Schritt 1.2.2.1.2
Faktorisiere aus heraus.
Schritt 1.2.2.1.3
Faktorisiere aus heraus.
Schritt 1.2.2.1.4
Faktorisiere aus heraus.
Schritt 1.2.2.1.5
Faktorisiere aus heraus.
Schritt 1.2.2.2
Faktorisiere.
Schritt 1.2.2.2.1
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 1.2.2.2.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 1.2.2.2.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 1.2.2.2.2
Entferne unnötige Klammern.
Schritt 1.2.3
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 1.2.4
Setze gleich und löse nach auf.
Schritt 1.2.4.1
Setze gleich .
Schritt 1.2.4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.5
Setze gleich und löse nach auf.
Schritt 1.2.5.1
Setze gleich .
Schritt 1.2.5.2
Addiere zu beiden Seiten der Gleichung.
Schritt 1.2.6
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 1.3
Ermittle die Werte, wo die Ableitung nicht definiert ist.
Schritt 1.3.1
Der Definitionsbereich umfasst alle reellen Zahlen, ausgenommen jene, für die der Ausdruck nicht definiert ist. In diesem Fall gibt es keine reellen Zahlen, für die der Ausdruck nicht definiert ist.
Schritt 1.4
Werte an jeden Wert aus, wo die Ableitung ist oder nicht definiert ist.
Schritt 1.4.1
Berechne bei .
Schritt 1.4.1.1
Ersetze durch .
Schritt 1.4.1.2
Vereinfache.
Schritt 1.4.1.2.1
Vereinfache jeden Term.
Schritt 1.4.1.2.1.1
Potenziere mit .
Schritt 1.4.1.2.1.2
Mutltipliziere mit .
Schritt 1.4.1.2.1.3
Potenziere mit .
Schritt 1.4.1.2.1.4
Multipliziere .
Schritt 1.4.1.2.1.4.1
Kombiniere und .
Schritt 1.4.1.2.1.4.2
Mutltipliziere mit .
Schritt 1.4.1.2.1.5
Mutltipliziere mit .
Schritt 1.4.1.2.2
Ermittle den gemeinsamen Nenner.
Schritt 1.4.1.2.2.1
Schreibe als einen Bruch mit dem Nenner .
Schritt 1.4.1.2.2.2
Mutltipliziere mit .
Schritt 1.4.1.2.2.3
Mutltipliziere mit .
Schritt 1.4.1.2.2.4
Schreibe als einen Bruch mit dem Nenner .
Schritt 1.4.1.2.2.5
Mutltipliziere mit .
Schritt 1.4.1.2.2.6
Mutltipliziere mit .
Schritt 1.4.1.2.2.7
Schreibe als einen Bruch mit dem Nenner .
Schritt 1.4.1.2.2.8
Mutltipliziere mit .
Schritt 1.4.1.2.2.9
Mutltipliziere mit .
Schritt 1.4.1.2.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.4.1.2.4
Vereinfache jeden Term.
Schritt 1.4.1.2.4.1
Mutltipliziere mit .
Schritt 1.4.1.2.4.2
Mutltipliziere mit .
Schritt 1.4.1.2.4.3
Mutltipliziere mit .
Schritt 1.4.1.2.5
Vereinfache durch Addieren und Subtrahieren.
Schritt 1.4.1.2.5.1
Addiere und .
Schritt 1.4.1.2.5.2
Subtrahiere von .
Schritt 1.4.1.2.5.3
Addiere und .
Schritt 1.4.2
Berechne bei .
Schritt 1.4.2.1
Ersetze durch .
Schritt 1.4.2.2
Vereinfache.
Schritt 1.4.2.2.1
Vereinfache jeden Term.
Schritt 1.4.2.2.1.1
Potenziere mit .
Schritt 1.4.2.2.1.2
Mutltipliziere mit .
Schritt 1.4.2.2.1.3
Potenziere mit .
Schritt 1.4.2.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 1.4.2.2.1.4.1
Faktorisiere aus heraus.
Schritt 1.4.2.2.1.4.2
Kürze den gemeinsamen Faktor.
Schritt 1.4.2.2.1.4.3
Forme den Ausdruck um.
Schritt 1.4.2.2.1.5
Mutltipliziere mit .
Schritt 1.4.2.2.1.6
Mutltipliziere mit .
Schritt 1.4.2.2.2
Vereinfache durch Addieren und Subtrahieren.
Schritt 1.4.2.2.2.1
Addiere und .
Schritt 1.4.2.2.2.2
Subtrahiere von .
Schritt 1.4.2.2.2.3
Addiere und .
Schritt 1.4.3
Liste all Punkte auf.
Schritt 2
Schließe die Punkte aus, die nicht im Intervall liegen.
Schritt 3
Da es keinen Wert von gibt, der die erste Ableitung gleich macht, gibt es keine lokalen Extrema.
Keine lokalen Extrema
Schritt 4
Vergleiche die für jeden Wert von gefundenen -Werte, um das absolute Maximum und das absolute Minimum im angegebenen Intervall zu bestimmen. Das Maximum wird beim größten -Wert und das Minimum beim niedrigsten -Wert auftreten.
Absolutes Maximum:
Kein absolutes Minimum
Schritt 5