Gib eine Aufgabe ein ...
Analysis Beispiele
Schritt 1
Schritt 1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 1.2
Berechne .
Schritt 1.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.2.3
Kombiniere und .
Schritt 1.2.4
Kombiniere und .
Schritt 1.2.5
Kürze den gemeinsamen Faktor von .
Schritt 1.2.5.1
Kürze den gemeinsamen Faktor.
Schritt 1.2.5.2
Dividiere durch .
Schritt 1.3
Berechne .
Schritt 1.3.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.3.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.3.3
Mutltipliziere mit .
Schritt 1.3.4
Kombiniere und .
Schritt 1.3.5
Kombiniere und .
Schritt 1.3.6
Kürze den gemeinsamen Teiler von und .
Schritt 1.3.6.1
Faktorisiere aus heraus.
Schritt 1.3.6.2
Kürze die gemeinsamen Faktoren.
Schritt 1.3.6.2.1
Faktorisiere aus heraus.
Schritt 1.3.6.2.2
Kürze den gemeinsamen Faktor.
Schritt 1.3.6.2.3
Forme den Ausdruck um.
Schritt 1.3.6.2.4
Dividiere durch .
Schritt 1.4
Berechne .
Schritt 1.4.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 1.4.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.4.3
Kombiniere und .
Schritt 1.4.4
Kombiniere und .
Schritt 1.4.5
Kürze den gemeinsamen Faktor von .
Schritt 1.4.5.1
Kürze den gemeinsamen Faktor.
Schritt 1.4.5.2
Dividiere durch .
Schritt 1.5
Differenziere.
Schritt 1.5.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 1.5.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 1.5.3
Addiere und .
Schritt 2
Schritt 2.1
Differenziere.
Schritt 2.1.1
Gemäß der Summenregel ist die Ableitung von nach .
Schritt 2.1.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2
Berechne .
Schritt 2.2.1
Da konstant bezüglich ist, ist die Ableitung von nach gleich .
Schritt 2.2.2
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.2.3
Mutltipliziere mit .
Schritt 2.3
Differenziere.
Schritt 2.3.1
Differenziere unter Anwendung der Potenzregel, die besagt, dass gleich ist mit .
Schritt 2.3.2
Da konstant bezüglich ist, ist die Ableitung von bezüglich gleich .
Schritt 2.3.3
Addiere und .
Schritt 3
Die zweite Ableitung von nach ist .