Analysis Beispiele

Berechne das Integral Integral von e bis infinity über 1/(x( natürlicher Logarithmus von x)^2) nach x
Schritt 1
Schreibe das Integral als Grenzwert, wenn sich an annähert.
Schritt 2
Sei . Dann ist , folglich . Forme um unter Verwendung von und .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Es sei . Ermittle .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Differenziere .
Schritt 2.1.2
Die Ableitung von nach ist .
Schritt 2.2
Setze die untere Grenze für in ein.
Schritt 2.3
Der natürliche Logarithmus von ist .
Schritt 2.4
Setze die obere Grenze für in ein.
Schritt 2.5
Die für und gefundenen Werte werden dazu verwendet, um das bestimmte Integral zu berechnen.
Schritt 2.6
Schreibe die Aufgabe mithilfe von , und den neuen Grenzen der Integration neu.
Schritt 3
Wende die grundlegenden Potenzregeln an.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Bringe aus dem Nenner durch Potenzieren mit .
Schritt 3.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 3.2.2
Mutltipliziere mit .
Schritt 4
Gemäß der Potenzregel ist das Integral von nach gleich .
Schritt 5
Substituiere und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Berechne bei und .
Schritt 5.2
Eins zu einer beliebigen Potenz erhoben ergibt eins.
Schritt 6
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Zerlege den Grenzwert unter Anwendung der Summenregel für Grenzwerte auf den Grenzwert, wenn sich an annähert.
Schritt 6.2
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 6.3
Da sein Zähler sich einer reellen Zahl nähert, während sein Nenner unbegrenzt ist, nähert sich der Bruch .
Schritt 6.4
Berechne den Grenzwert.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.4.1
Berechne den Grenzwert von , welcher konstant ist, wenn sich annähert.
Schritt 6.4.2
Addiere und .