Grundlegende Mathematik Beispiele

Vereinfache (a^2+7)/(a^2-25)*(a^3-3a^2+7a-21)/(a^2+2a-15)
Schritt 1
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Schreibe als um.
Schritt 1.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 2
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Klammere den größten gemeinsamen Teiler aus jeder Gruppe aus.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Gruppiere die ersten beiden Terme und die letzten beiden Terme.
Schritt 2.1.2
Klammere den größten gemeinsamen Teiler (ggT) aus jeder Gruppe aus.
Schritt 2.2
Faktorisiere das Polynom durch Ausklammern des größten gemeinsamen Teilers, .
Schritt 3
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 3.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Kürze den gemeinsamen Faktor.
Schritt 4.2
Forme den Ausdruck um.
Schritt 5
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Mutltipliziere mit .
Schritt 5.2
Potenziere mit .
Schritt 5.3
Potenziere mit .
Schritt 5.4
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.5
Addiere und .
Schritt 5.6
Potenziere mit .
Schritt 5.7
Potenziere mit .
Schritt 5.8
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 5.9
Addiere und .