Grundlegende Mathematik Beispiele

Vereinfache 5/(a^2+2a+1)+8/(a^2-1)
Schritt 1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Faktorisiere unter Verwendung der binomischen Formeln.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Schreibe als um.
Schritt 1.1.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 1.1.3
Schreibe das Polynom neu.
Schritt 1.1.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 1.2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Schreibe als um.
Schritt 1.2.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Mutltipliziere mit .
Schritt 4.2
Mutltipliziere mit .
Schritt 4.3
Potenziere mit .
Schritt 4.4
Potenziere mit .
Schritt 4.5
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 4.6
Addiere und .
Schritt 5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Wende das Distributivgesetz an.
Schritt 6.2
Mutltipliziere mit .
Schritt 6.3
Wende das Distributivgesetz an.
Schritt 6.4
Mutltipliziere mit .
Schritt 6.5
Addiere und .
Schritt 6.6
Addiere und .