Grundlegende Mathematik Beispiele

Vereinfache (5r)/(r^2+2r-35)-r/(r^2-49)
Schritt 1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 1.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 1.2
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.2.1
Schreibe als um.
Schritt 1.2.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 4
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Mutltipliziere mit .
Schritt 4.2
Mutltipliziere mit .
Schritt 4.3
Stelle die Faktoren von um.
Schritt 4.4
Stelle die Faktoren von um.
Schritt 5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Faktorisiere aus heraus.
Schritt 6.1.2
Faktorisiere aus heraus.
Schritt 6.1.3
Faktorisiere aus heraus.
Schritt 6.2
Wende das Distributivgesetz an.
Schritt 6.3
Mutltipliziere mit .
Schritt 6.4
Wende das Distributivgesetz an.
Schritt 6.5
Mutltipliziere mit .
Schritt 6.6
Subtrahiere von .
Schritt 6.7
Addiere und .
Schritt 6.8
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.8.1
Faktorisiere aus heraus.
Schritt 6.8.2
Faktorisiere aus heraus.
Schritt 6.8.3
Faktorisiere aus heraus.
Schritt 7
Bringe auf die linke Seite von .