Grundlegende Mathematik Beispiele

Vereinfache (14/(x-9)+x/(x-6))/(3/(x-10)-2/(x-9))
Schritt 1
Multiply the numerator and denominator of the fraction by .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Mutltipliziere mit .
Schritt 1.2
Kombinieren.
Schritt 2
Wende das Distributivgesetz an.
Schritt 3
Vereinfache durch Kürzen.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1.1
Faktorisiere aus heraus.
Schritt 3.1.2
Kürze den gemeinsamen Faktor.
Schritt 3.1.3
Forme den Ausdruck um.
Schritt 3.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.2.1
Faktorisiere aus heraus.
Schritt 3.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.3
Forme den Ausdruck um.
Schritt 3.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.3.1
Faktorisiere aus heraus.
Schritt 3.3.2
Kürze den gemeinsamen Faktor.
Schritt 3.3.3
Forme den Ausdruck um.
Schritt 3.4
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.4.2
Faktorisiere aus heraus.
Schritt 3.4.3
Kürze den gemeinsamen Faktor.
Schritt 3.4.4
Forme den Ausdruck um.
Schritt 4
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1.1
Faktorisiere aus heraus.
Schritt 4.1.2
Faktorisiere aus heraus.
Schritt 4.1.3
Faktorisiere aus heraus.
Schritt 4.2
Wende das Distributivgesetz an.
Schritt 4.3
Bringe auf die linke Seite von .
Schritt 4.4
Mutltipliziere mit .
Schritt 4.5
Wende das Distributivgesetz an.
Schritt 4.6
Mutltipliziere mit .
Schritt 4.7
Subtrahiere von .
Schritt 4.8
Stelle die Terme um.
Schritt 4.9
Faktorisiere unter der Verwendung der AC-Methode.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.9.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 4.9.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 5
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Faktorisiere aus heraus.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Faktorisiere aus heraus.
Schritt 5.1.2
Faktorisiere aus heraus.
Schritt 5.1.3
Faktorisiere aus heraus.
Schritt 5.2
Wende das Distributivgesetz an.
Schritt 5.3
Bringe auf die linke Seite von .
Schritt 5.4
Mutltipliziere mit .
Schritt 5.5
Wende das Distributivgesetz an.
Schritt 5.6
Bringe auf die linke Seite von .
Schritt 5.7
Mutltipliziere mit .
Schritt 5.8
Subtrahiere von .
Schritt 5.9
Addiere und .
Schritt 6
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Kürze den gemeinsamen Faktor.
Schritt 6.2
Forme den Ausdruck um.