Gib eine Aufgabe ein ...
Grundlegende Mathematik Beispiele
Schritt 1
Schritt 1.1
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 1.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 1.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 1.2
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 1.2.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 1.2.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 2
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 2.3
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 2.4
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 2.5
Der Teiler von ist selbst.
occurs time.
Schritt 2.6
Der Teiler von ist selbst.
occurs time.
Schritt 2.7
Der Teiler von ist selbst.
occurs time.
Schritt 2.8
Der Teiler von ist selbst.
occurs time.
Schritt 2.9
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Faktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 3
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.2
Forme den Ausdruck um.
Schritt 3.2.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.2.1
Faktorisiere aus heraus.
Schritt 3.2.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2.3
Forme den Ausdruck um.
Schritt 3.2.1.3
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 3.2.1.3.1
Wende das Distributivgesetz an.
Schritt 3.2.1.3.2
Wende das Distributivgesetz an.
Schritt 3.2.1.3.3
Wende das Distributivgesetz an.
Schritt 3.2.1.4
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 3.2.1.4.1
Vereinfache jeden Term.
Schritt 3.2.1.4.1.1
Mutltipliziere mit .
Schritt 3.2.1.4.1.2
Bringe auf die linke Seite von .
Schritt 3.2.1.4.1.3
Mutltipliziere mit .
Schritt 3.2.1.4.2
Subtrahiere von .
Schritt 3.2.2
Vereinfache durch Addieren von Termen.
Schritt 3.2.2.1
Subtrahiere von .
Schritt 3.2.2.2
Addiere und .
Schritt 3.3
Vereinfache die rechte Seite.
Schritt 3.3.1
Kürze den gemeinsamen Faktor von .
Schritt 3.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.3.1.2
Forme den Ausdruck um.
Schritt 4
Schritt 4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2
Subtrahiere von .
Schritt 4.3
Faktorisiere die linke Seite der Gleichung.
Schritt 4.3.1
Es sei . Ersetze für alle .
Schritt 4.3.2
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 4.3.2.1
Ordne Terme um.
Schritt 4.3.2.2
Schreibe als um.
Schritt 4.3.2.3
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 4.3.2.4
Schreibe das Polynom neu.
Schritt 4.3.2.5
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 4.3.3
Ersetze alle durch .
Schritt 4.4
Setze gleich .
Schritt 4.5
Addiere zu beiden Seiten der Gleichung.