Grundlegende Mathematik Beispiele

m 구하기 m-(m/2-1/2)=1-(m/5-2/5)
Schritt 1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.1
Wende das Distributivgesetz an.
Schritt 1.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 1.1.2.1
Mutltipliziere mit .
Schritt 1.1.2.2
Mutltipliziere mit .
Schritt 1.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 1.3
Vereinfache Terme.
Tippen, um mehr Schritte zu sehen ...
Schritt 1.3.1
Kombiniere und .
Schritt 1.3.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.3.3
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 1.4
Bringe auf die linke Seite von .
Schritt 1.5
Subtrahiere von .
Schritt 2
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Vereinfache jeden Term.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.1
Wende das Distributivgesetz an.
Schritt 2.1.2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1.2.1
Mutltipliziere mit .
Schritt 2.1.2.2
Mutltipliziere mit .
Schritt 2.2
Vereinfache den Ausdruck.
Tippen, um mehr Schritte zu sehen ...
Schritt 2.2.1
Schreibe als Bruch mit einem gemeinsamen Nenner.
Schritt 2.2.2
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 2.2.3
Addiere und .
Schritt 3
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.3
Um als Bruch mit einem gemeinsamen Nenner zu schreiben, multipliziere mit .
Schritt 3.4
Schreibe jeden Ausdruck mit einem gemeinsamen Nenner von , indem du jeden mit einem entsprechenden Faktor von multiplizierst.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.4.1
Mutltipliziere mit .
Schritt 3.4.2
Mutltipliziere mit .
Schritt 3.4.3
Mutltipliziere mit .
Schritt 3.4.4
Mutltipliziere mit .
Schritt 3.5
Vereinige die Zähler über dem gemeinsamen Nenner.
Schritt 3.6
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 3.6.1
Wende das Distributivgesetz an.
Schritt 3.6.2
Bringe auf die linke Seite von .
Schritt 3.6.3
Mutltipliziere mit .
Schritt 3.6.4
Bringe auf die linke Seite von .
Schritt 3.6.5
Addiere und .
Schritt 4
Multipliziere beide Seiten mit .
Schritt 5
Vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 5.1.1.2
Forme den Ausdruck um.
Schritt 5.2
Vereinfache die rechte Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Vereinfache .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1.1.1
Faktorisiere aus heraus.
Schritt 5.2.1.1.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.1.1.3
Forme den Ausdruck um.
Schritt 5.2.1.2
Mutltipliziere mit .
Schritt 6
Löse nach auf.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Bringe alle Terme, die nicht enthalten, auf die rechte Seite der Gleichung.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 6.1.2
Subtrahiere von .
Schritt 6.2
Teile jeden Ausdruck in durch und vereinfache.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.1
Teile jeden Ausdruck in durch .
Schritt 6.2.2
Vereinfache die linke Seite.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 6.2.2.1.2
Dividiere durch .
Schritt 7
Das Ergebnis kann in mehreren Formen wiedergegeben werden.
Exakte Form:
Dezimalform:
Darstellung als gemischte Zahl: