Gib eine Aufgabe ein ...
Grundlegende Mathematik Beispiele
Schritt 1
Schritt 1.1
Faktorisiere aus heraus.
Schritt 1.1.1
Faktorisiere aus heraus.
Schritt 1.1.2
Faktorisiere aus heraus.
Schritt 1.1.3
Faktorisiere aus heraus.
Schritt 1.2
Schreibe als um.
Schritt 1.3
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 2
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Since contains both numbers and variables, there are four steps to find the LCM. Find LCM for the numeric, variable, and compound variable parts. Then, multiply them all together.
Schritte, um das kgV für zu finden, sind:
1. Finde das kgV für den numerischen Teil .
2. Finde das kgV für den variablen Teil .
Finde das kgV für den zusammengesetzten variablen Teil .
4. Multipliziere jedes kgV miteinander.
Schritt 2.3
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 2.4
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 2.5
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 2.6
Der Teiler von ist selbst.
occurs time.
Schritt 2.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2.8
Der Teiler von ist selbst.
occurs time.
Schritt 2.9
Der Teiler von ist selbst.
occurs time.
Schritt 2.10
Der Teiler von ist selbst.
occurs time.
Schritt 2.11
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Faktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2.12
Das kleinste gemeinsame Vielfache einer Reihe von Zahlen ist die kleinste Zahl, von der die Zahlen Teiler sind.
Schritt 3
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.2
Forme den Ausdruck um.
Schritt 3.2.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 3.2.1.2.1
Wende das Distributivgesetz an.
Schritt 3.2.1.2.2
Wende das Distributivgesetz an.
Schritt 3.2.1.2.3
Wende das Distributivgesetz an.
Schritt 3.2.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 3.2.1.3.1
Vereinfache jeden Term.
Schritt 3.2.1.3.1.1
Mutltipliziere mit .
Schritt 3.2.1.3.1.2
Bringe auf die linke Seite von .
Schritt 3.2.1.3.1.3
Mutltipliziere mit .
Schritt 3.2.1.3.2
Addiere und .
Schritt 3.2.1.4
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.4.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.1.4.2
Faktorisiere aus heraus.
Schritt 3.2.1.4.3
Faktorisiere aus heraus.
Schritt 3.2.1.4.4
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.4.5
Forme den Ausdruck um.
Schritt 3.2.2
Subtrahiere von .
Schritt 3.3
Vereinfache die rechte Seite.
Schritt 3.3.1
Vereinfache durch Ausmultiplizieren.
Schritt 3.3.1.1
Wende das Distributivgesetz an.
Schritt 3.3.1.2
Vereinfache den Ausdruck.
Schritt 3.3.1.2.1
Mutltipliziere mit .
Schritt 3.3.1.2.2
Bringe auf die linke Seite von .
Schritt 3.3.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 3.3.2.1
Wende das Distributivgesetz an.
Schritt 3.3.2.2
Wende das Distributivgesetz an.
Schritt 3.3.2.3
Wende das Distributivgesetz an.
Schritt 3.3.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 3.3.3.1
Vereinfache jeden Term.
Schritt 3.3.3.1.1
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.3.3.1.1.1
Mutltipliziere mit .
Schritt 3.3.3.1.1.1.1
Potenziere mit .
Schritt 3.3.3.1.1.1.2
Wende die Exponentenregel an, um die Exponenten zu kombinieren.
Schritt 3.3.3.1.1.2
Addiere und .
Schritt 3.3.3.1.2
Bringe auf die linke Seite von .
Schritt 3.3.3.1.3
Multipliziere mit durch Addieren der Exponenten.
Schritt 3.3.3.1.3.1
Bewege .
Schritt 3.3.3.1.3.2
Mutltipliziere mit .
Schritt 3.3.3.1.4
Mutltipliziere mit .
Schritt 3.3.3.2
Subtrahiere von .
Schritt 3.3.3.3
Addiere und .
Schritt 3.3.4
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 4.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 4.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 4.2
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4.3
Setze gleich und löse nach auf.
Schritt 4.3.1
Setze gleich .
Schritt 4.3.2
Addiere zu beiden Seiten der Gleichung.
Schritt 4.4
Setze gleich und löse nach auf.
Schritt 4.4.1
Setze gleich .
Schritt 4.4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 4.5
Die endgültige Lösung sind alle Werte, die wahr machen.
Schritt 5
Schließe die Lösungen aus, die nicht erfüllen.