Gib eine Aufgabe ein ...
Grundlegende Mathematik Beispiele
Schritt 1
Schritt 1.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 1.2
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 1.3
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 1.4
hat Faktoren von und .
Schritt 1.5
Mutltipliziere mit .
Schritt 1.6
Der Teiler von ist selbst.
occurs time.
Schritt 1.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Faktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 1.8
Das kleinste gemeinsame Vielfache einer Reihe von Zahlen ist die kleinste Zahl, von der die Zahlen Teiler sind.
Schritt 2
Schritt 2.1
Multipliziere jeden Term in mit .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Vereinfache jeden Term.
Schritt 2.2.1.1
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.2.1.2
Wende das Distributivgesetz an.
Schritt 2.2.1.3
Multipliziere mit durch Addieren der Exponenten.
Schritt 2.2.1.3.1
Bewege .
Schritt 2.2.1.3.2
Mutltipliziere mit .
Schritt 2.2.1.4
Mutltipliziere mit .
Schritt 2.2.1.5
Schreibe neu unter Anwendung des Kommutativgesetzes der Multiplikation.
Schritt 2.2.1.6
Multipliziere .
Schritt 2.2.1.6.1
Kombiniere und .
Schritt 2.2.1.6.2
Mutltipliziere mit .
Schritt 2.2.1.7
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.7.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.7.2
Forme den Ausdruck um.
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.2
Forme den Ausdruck um.
Schritt 3
Schritt 3.1
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Schritt 3.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.1.2
Subtrahiere von .
Schritt 3.2
Bringe alle Terme auf die linke Seite der Gleichung und vereinfache.
Schritt 3.2.1
Addiere zu beiden Seiten der Gleichung.
Schritt 3.2.2
Addiere und .
Schritt 3.3
Verwende die Quadratformel, um die Lösungen zu finden.
Schritt 3.4
Setze die Werte , und in die Quadratformel ein und löse nach auf.
Schritt 3.5
Vereinfache.
Schritt 3.5.1
Vereinfache den Zähler.
Schritt 3.5.1.1
Potenziere mit .
Schritt 3.5.1.2
Multipliziere .
Schritt 3.5.1.2.1
Mutltipliziere mit .
Schritt 3.5.1.2.2
Mutltipliziere mit .
Schritt 3.5.1.3
Subtrahiere von .
Schritt 3.5.1.4
Schreibe als um.
Schritt 3.5.1.5
Schreibe als um.
Schritt 3.5.1.6
Schreibe als um.
Schritt 3.5.1.7
Schreibe als um.
Schritt 3.5.1.7.1
Faktorisiere aus heraus.
Schritt 3.5.1.7.2
Schreibe als um.
Schritt 3.5.1.8
Ziehe Terme aus der Wurzel heraus.
Schritt 3.5.1.9
Bringe auf die linke Seite von .
Schritt 3.5.2
Mutltipliziere mit .
Schritt 3.6
Die endgültige Lösung ist die Kombination beider Lösungen.