Grundlegende Mathematik Beispiele

Vereinfache (5^(3/2)a^(9/8)b^(-3/4)c^(1/8))^(4/3)
Schritt 1
Schreibe den Ausdruck um mithilfe der Regel des negativen Exponenten .
Schritt 2
Multipliziere .
Tippen, um mehr Schritte zu sehen ...
Schritt 2.1
Kombiniere und .
Schritt 2.2
Kombiniere und .
Schritt 3
Kombiniere und .
Schritt 4
Wende die Exponentenregel an, um den Exponenten zu verteilen.
Tippen, um mehr Schritte zu sehen ...
Schritt 4.1
Wende die Produktregel auf an.
Schritt 4.2
Wende die Produktregel auf an.
Schritt 4.3
Wende die Produktregel auf an.
Schritt 5
Vereinfache den Zähler.
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.2.1
Faktorisiere aus heraus.
Schritt 5.1.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.1.2.3
Forme den Ausdruck um.
Schritt 5.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.1.3.1
Faktorisiere aus heraus.
Schritt 5.1.3.2
Kürze den gemeinsamen Faktor.
Schritt 5.1.3.3
Forme den Ausdruck um.
Schritt 5.2
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.2.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.2.1
Kürze den gemeinsamen Faktor.
Schritt 5.2.2.2
Forme den Ausdruck um.
Schritt 5.2.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.2.3.1
Faktorisiere aus heraus.
Schritt 5.2.3.2
Kürze den gemeinsamen Faktor.
Schritt 5.2.3.3
Forme den Ausdruck um.
Schritt 5.3
Potenziere mit .
Schritt 5.4
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 5.4.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 5.4.2.1
Faktorisiere aus heraus.
Schritt 5.4.2.2
Kürze den gemeinsamen Faktor.
Schritt 5.4.2.3
Forme den Ausdruck um.
Schritt 5.4.3
Mutltipliziere mit .
Schritt 5.4.4
Mutltipliziere mit .
Schritt 6
Vereinfache den Nenner.
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1
Multipliziere die Exponenten in .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.1
Wende die Potenzregel an und multipliziere die Exponenten, .
Schritt 6.1.2
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.2.1
Kürze den gemeinsamen Faktor.
Schritt 6.1.2.2
Forme den Ausdruck um.
Schritt 6.1.3
Kürze den gemeinsamen Faktor von .
Tippen, um mehr Schritte zu sehen ...
Schritt 6.1.3.1
Kürze den gemeinsamen Faktor.
Schritt 6.1.3.2
Forme den Ausdruck um.
Schritt 6.2
Vereinfache.
Schritt 7
Bringe auf die linke Seite von .