Gib eine Aufgabe ein ...
Grundlegende Mathematik Beispiele
Schritt 1
Schritt 1.1
Schreibe als um.
Schritt 1.2
Da beide Terme perfekte Quadrate sind, faktorisiere durch Anwendung der dritten binomischen Formel, , mit und .
Schritt 2
Schritt 2.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 2.2
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 2.3
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 2.4
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 2.5
Der Teiler von ist selbst.
occurs time.
Schritt 2.6
Der Teiler von ist selbst.
occurs time.
Schritt 2.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Faktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 3
Schritt 3.1
Multipliziere jeden Term in mit .
Schritt 3.2
Vereinfache die linke Seite.
Schritt 3.2.1
Vereinfache jeden Term.
Schritt 3.2.1.1
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.1.1
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.1.2
Forme den Ausdruck um.
Schritt 3.2.1.2
Kürze den gemeinsamen Faktor von .
Schritt 3.2.1.2.1
Bringe das führende Minuszeichen in in den Zähler.
Schritt 3.2.1.2.2
Faktorisiere aus heraus.
Schritt 3.2.1.2.3
Kürze den gemeinsamen Faktor.
Schritt 3.2.1.2.4
Forme den Ausdruck um.
Schritt 3.2.1.3
Wende das Distributivgesetz an.
Schritt 3.2.1.4
Mutltipliziere mit .
Schritt 3.2.2
Subtrahiere von .
Schritt 3.3
Vereinfache die rechte Seite.
Schritt 3.3.1
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 3.3.1.1
Wende das Distributivgesetz an.
Schritt 3.3.1.2
Wende das Distributivgesetz an.
Schritt 3.3.1.3
Wende das Distributivgesetz an.
Schritt 3.3.2
Vereinfache Terme.
Schritt 3.3.2.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 3.3.2.1.1
Ordne die Faktoren in den Termen und neu an.
Schritt 3.3.2.1.2
Addiere und .
Schritt 3.3.2.1.3
Addiere und .
Schritt 3.3.2.2
Vereinfache jeden Term.
Schritt 3.3.2.2.1
Mutltipliziere mit .
Schritt 3.3.2.2.2
Mutltipliziere mit .
Schritt 3.3.2.3
Vereinfache durch Ausmultiplizieren.
Schritt 3.3.2.3.1
Wende das Distributivgesetz an.
Schritt 3.3.2.3.2
Mutltipliziere mit .
Schritt 4
Schritt 4.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.2
Addiere zu beiden Seiten der Gleichung.
Schritt 4.3
Addiere und .
Schritt 4.4
Faktorisiere die linke Seite der Gleichung.
Schritt 4.4.1
Faktorisiere aus heraus.
Schritt 4.4.1.1
Stelle und um.
Schritt 4.4.1.2
Faktorisiere aus heraus.
Schritt 4.4.1.3
Faktorisiere aus heraus.
Schritt 4.4.1.4
Faktorisiere aus heraus.
Schritt 4.4.1.5
Faktorisiere aus heraus.
Schritt 4.4.1.6
Faktorisiere aus heraus.
Schritt 4.4.2
Faktorisiere.
Schritt 4.4.2.1
Faktorisiere unter der Verwendung der AC-Methode.
Schritt 4.4.2.1.1
Betrachte die Form . Finde ein Paar ganzer Zahlen, deren Produkt und deren Summe ist. In diesem Fall, deren Produkt und deren Summe ist.
Schritt 4.4.2.1.2
Schreibe die faktorisierte Form mithilfe dieser Ganzzahlen.
Schritt 4.4.2.2
Entferne unnötige Klammern.
Schritt 4.5
Wenn irgendein einzelner Faktor auf der linken Seite der Gleichung gleich ist, dann ist der ganze Ausdruck gleich .
Schritt 4.6
Setze gleich und löse nach auf.
Schritt 4.6.1
Setze gleich .
Schritt 4.6.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.7
Setze gleich und löse nach auf.
Schritt 4.7.1
Setze gleich .
Schritt 4.7.2
Subtrahiere von beiden Seiten der Gleichung.
Schritt 4.8
Die endgültige Lösung sind alle Werte, die wahr machen.