Gib eine Aufgabe ein ...
Grundlegende Mathematik Beispiele
Schritt 1
Schritt 1.1
Den Hauptnenner einer Liste von Werten zu bestimmen, ist das gleiche wie das kgV der Nenner dieser Werte zu bestimmen.
Schritt 1.2
Das kgV ist die kleinste positive Zahl, die von all den Zahlen ohne Rest geteilt wird.
1. Notiere die Primfaktoren für jede Zahl.
2. Multipliziere jeden Faktor so oft, wie er maximal in einer der Zahlen vorkommt.
Schritt 1.3
Die Zahl ist keine Primzahl, da sie nur einen positiven Teiler hat, sich selbst.
Nicht prim
Schritt 1.4
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Primfaktoren so oft multipliziert, wie sie maximal in einer der Zahlen vorkommen.
Schritt 1.5
Der Teiler von ist selbst.
occurs time.
Schritt 1.6
Der Teiler von ist selbst.
occurs time.
Schritt 1.7
Das kgV von ist das Ergebnis, welches man erhält, wenn man alle Faktoren so oft multipliziert, wie sie maximal in einem der Terme vorkommen.
Schritt 2
Schritt 2.1
Multipliziere jeden Term in mit .
Schritt 2.2
Vereinfache die linke Seite.
Schritt 2.2.1
Kürze den gemeinsamen Faktor von .
Schritt 2.2.1.1
Kürze den gemeinsamen Faktor.
Schritt 2.2.1.2
Forme den Ausdruck um.
Schritt 2.2.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.2.2.1
Wende das Distributivgesetz an.
Schritt 2.2.2.2
Wende das Distributivgesetz an.
Schritt 2.2.2.3
Wende das Distributivgesetz an.
Schritt 2.2.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 2.2.3.1
Vereinfache jeden Term.
Schritt 2.2.3.1.1
Mutltipliziere mit .
Schritt 2.2.3.1.2
Bringe auf die linke Seite von .
Schritt 2.2.3.1.3
Mutltipliziere mit .
Schritt 2.2.3.2
Subtrahiere von .
Schritt 2.3
Vereinfache die rechte Seite.
Schritt 2.3.1
Vereinfache jeden Term.
Schritt 2.3.1.1
Kürze den gemeinsamen Faktor von .
Schritt 2.3.1.1.1
Faktorisiere aus heraus.
Schritt 2.3.1.1.2
Kürze den gemeinsamen Faktor.
Schritt 2.3.1.1.3
Forme den Ausdruck um.
Schritt 2.3.1.2
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.3.1.2.1
Wende das Distributivgesetz an.
Schritt 2.3.1.2.2
Wende das Distributivgesetz an.
Schritt 2.3.1.2.3
Wende das Distributivgesetz an.
Schritt 2.3.1.3
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 2.3.1.3.1
Vereinfache jeden Term.
Schritt 2.3.1.3.1.1
Mutltipliziere mit .
Schritt 2.3.1.3.1.2
Bringe auf die linke Seite von .
Schritt 2.3.1.3.1.3
Mutltipliziere mit .
Schritt 2.3.1.3.2
Addiere und .
Schritt 2.3.1.4
Multipliziere aus unter Verwendung der FOIL-Methode.
Schritt 2.3.1.4.1
Wende das Distributivgesetz an.
Schritt 2.3.1.4.2
Wende das Distributivgesetz an.
Schritt 2.3.1.4.3
Wende das Distributivgesetz an.
Schritt 2.3.1.5
Vereinfache und fasse gleichartige Terme zusammen.
Schritt 2.3.1.5.1
Vereinfache jeden Term.
Schritt 2.3.1.5.1.1
Mutltipliziere mit .
Schritt 2.3.1.5.1.2
Bringe auf die linke Seite von .
Schritt 2.3.1.5.1.3
Mutltipliziere mit .
Schritt 2.3.1.5.2
Subtrahiere von .
Schritt 2.3.1.6
Wende das Distributivgesetz an.
Schritt 2.3.1.7
Vereinfache.
Schritt 2.3.1.7.1
Mutltipliziere mit .
Schritt 2.3.1.7.2
Mutltipliziere mit .
Schritt 2.3.2
Vereinfache durch Addieren von Termen.
Schritt 2.3.2.1
Vereine die Terme mit entgegengesetztem Vorzeichen in .
Schritt 2.3.2.1.1
Subtrahiere von .
Schritt 2.3.2.1.2
Addiere und .
Schritt 2.3.2.2
Addiere und .
Schritt 2.3.2.3
Addiere und .
Schritt 3
Schritt 3.1
Bringe alle Terme, die enthalten, auf die linke Seite der Gleichung.
Schritt 3.1.1
Subtrahiere von beiden Seiten der Gleichung.
Schritt 3.1.2
Subtrahiere von .
Schritt 3.2
Addiere zu beiden Seiten der Gleichung.
Schritt 3.3
Addiere und .
Schritt 3.4
Faktorisiere unter Verwendung der binomischen Formeln.
Schritt 3.4.1
Schreibe als um.
Schritt 3.4.2
Überprüfe, ob der mittlere Term das Zweifache des Produkts der Zahlen ist, die im ersten Term und im dritten Term quadriert werden.
Schritt 3.4.3
Schreibe das Polynom neu.
Schritt 3.4.4
Faktorisiere mithilfe der trinomischen Formel für das perfekte Quadrat , wobei und .
Schritt 3.5
Setze gleich .
Schritt 3.6
Addiere zu beiden Seiten der Gleichung.